1. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
|
2. |
黄理宾, 黄秋实, 杨烈. 全球及中国的结直肠癌流行病学特征及防治: 2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(5): 530-537.
|
3. |
Akert K, Sandri C, Weibel ER, et al. The fine structure of the perineural endothelium. Cell Tissue Res, 1976, 165(3): 281-295.
|
4. |
Batsakis JG. Nerves and neurotropic carcinomas. Ann Otol Rhinol Laryngol, 1985, 94(4 Pt 1): 426-467.
|
5. |
Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, and a standardized definition. Dermatol Surg, 2009, 35(2): 214-221.
|
6. |
Liebig C, Ayala G, Wilks JA, et al. Perineural invasion in cancer: a review of the literature. Cancer, 2009, 115(15): 3379-3391.
|
7. |
Binmadi NO, Basile JR. Perineural invasion in oral squamous cell carcinoma: a discussion of significance and review of the literature. Oral Oncol, 2011, 47(11): 1005-1010.
|
8. |
Miller ME, Palla B, Chen Q, et al. A novel classification system for perineural invasion in noncutaneous head and neck squamous cell carcinoma: histologic subcategories and patient outcomes. Am J Otolaryngol, 2012, 33(2): 212-215.
|
9. |
Zhang M, Xian HC, Dai L, et al. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci, 2021, 11(1): 117. doi: 10.1186/s13578-021-00630-4.
|
10. |
Liu Q, Ma Z, Cao Q, et al. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother, 2022, 155: 113691. doi: 10.1016/j.biopha.2022.113691.
|
11. |
Yaniv D, Mattson B, Talbot S, et al. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov, 2024, 23(10): 780-796.
|
12. |
Sun L, Chen S, Chen M. Schwann cells in the tumor microenvironment: need more attention. J Oncol, 2022, 2022: 1058667. doi: 10.1155/2022/1058667.
|
13. |
Zhang B, Guo X, Huang L, et al. Tumour-associated macrophages and Schwann cells promote perineural invasion via paracrine loop in pancreatic ductal adenocarcinoma. Br J Cancer, 2024, 130(4): 542-554.
|
14. |
Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer, 2019, 18(1): 26. doi: 10.1186/s12943-019-0954-x.
|
15. |
Silverman DA, Martinez VK, Dougherty PM, et al. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res, 2021, 81(6): 1431-1440.
|
16. |
Jaiswal M, Ganapathy A, Singh S, et al. Morphology of enteric glia in colorectal carcinoma: A comparative study of tumor site and its proximal normal margin. Morphologie, 2021, 105(351): 267-274.
|
17. |
Jiffar T, Yilmaz T, Lee J, et al. Brain derived neutrophic factor (BDNF) coordinates lympho-vascular metastasis through a fibroblast-governed paracrine axis in the tumor microenvironment. Cancer Cell Microenviron, 2017, 4(2): e1566. doi: 10.14800/ccm.1566.
|
18. |
Okugawa Y, Tanaka K, Inoue Y, et al. Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer, 2013, 108(1): 121-130.
|
19. |
Sun J, Yu L, Qu X, et al. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol, 2023, 14: 1184794. doi: 10.3389/fphar.2023.1184794.
|
20. |
Gao N, Li Y, Li J, et al. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol, 2020, 10: 598817. doi: 10.3389/fonc.2020.598817.
|
21. |
Schonkeren SL, Thijssen MS, Vaes N, et al. The emerging role of nerves and glia in colorectal cancer. Cancers (Basel), 2021, 13(1): 152. doi: 10.3390/cancers13010152.
|
22. |
Godlewski J, Kmiec Z. Colorectal cancer invasion and atrophy of the enteric nervous system: potential feedback and impact on cancer progression. Int J Mol Sci, 2020, 21(9): 3391. doi: 10.3390/ijms21093391.
|
23. |
Zhang L, Yang L, Jiang S, et al. Nerve dependence in colorectal cancer. Front Cell Dev Biol, 2022, 10: 766653. doi: 10.3389/fcell.2022.766653.
|
24. |
Jobling P, Pundavela J, Oliveira SM, et al. Nerve-cancer cell cross-talk: A novel promoter of tumor progression. Cancer Res, 2015, 75(9): 1777-1781.
|
25. |
Takacs GP, Flores-Toro JA, Harrison JK. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. Pharmacol Ther, 2021, 222: 107790. doi: 10.1016/j.pharmthera.2020.107790.
|
26. |
Dansereau MA, Midavaine É, Bégin-Lavallée V, et al. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J Neuroinflammation, 2021, 18(1): 79. doi: 10.1186/s12974-021-02125-y.
|
27. |
Ryu S, Liu X, Guo T, et al. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain, 2023, 146(10): 4274-4291.
|
28. |
Hirth M, Gandla J, Höper C, et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology, 2020, 159(2): 665-681.
|
29. |
Shi Y, Riese DJ, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol, 2020, 11: 574667. doi: 10.3389/fphar.2020.574667.
|
30. |
Capodanno Y, Hirth M. Targeting the cancer-neuronal crosstalk in the pancreatic cancer microenvironment. Int J Mol Sci, 2023, 24(19): 14989. doi: 10.3390/ijms241914989.
|
31. |
Sowparani S, Mahalakshmi P, Sweety JP, et al. Ubiquitous neural cell adhesion molecule (NCAM): Potential mechanism and valorisation in cancer pathophysiology, drug targeting and molecular transductions. Mol Neurobiol, 2022, 59(9): 5902-5924.
|
32. |
Kimura W, Watanabe T. Anatomy of the pancreatic nerve plexuses and significance of their dissection. Nihon Geka Gakkai Zasshi, 2011, 112(3): 170-176.
|
33. |
Bellis D, Marci V, Monga G. Light microscopic and immunohistochemical evaluation of vascular and neural invasion in colorectal cancer. Pathol Res Pract, 1993, 189(4): 443-447.
|
34. |
Shimada Y, Kido T, Kameyama H, et al. Retraction Note to: Clinical significance of perineural invasion diagnosed by immunohistochemistry with anti-S100 antibody in stage Ⅰ–Ⅲ colorectal cancer. Surg Today, 2022, 52(3): 519.
|
35. |
Mizukami H, Shirahata A, Goto T, et al. PGP9. 5 methylation as a marker for metastatic colorectal cancer. Anticancer Res, 2008, 28(5A): 2697-2700.
|
36. |
Mitsui Y, Shiina H, Hiraki M, et al. Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer—novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prev, 2012, 21(3): 487-496.
|
37. |
Sheng W, Zhang C, Mohiuddin TM, et al. Multiplex immunofluorescence: A powerful tool in cancer immunotherapy. Int J Mol Sci, 2023, 24(4): 3086. doi: 10.3390/ijms24043086.
|
38. |
Gadallah MS, Dawood M, Abdou A. The role of Beclin 1 and HER2 in colorectal carcinoma; An immunohistochemical study. Asian Pac J Cancer Prev, 2024, 25(2): 617-626.
|
39. |
Yang K, Stein TD, Huber BR, et al. Glioblastoma and malignant melanoma: Serendipitous or anticipated association? Neuropathology. 2021, 41(1): 65-71.
|
40. |
杨彦松, 冯峰, 傅爱燕, 等. MR放射组学预测直肠腺癌患者神经周围侵犯的研究. 放射学实践, 2019, 34(11): 1192-1197.
|
41. |
Yang YS, Qiu YJ, Zheng GH, et al. High resolution MRI-based radiomic nomogram in predicting perineural invasion in rectal cancer. Cancer Imaging, 2021, 21(1): 40. doi: 10.1186/s40644-021-00408-4.
|
42. |
Liu J, Sun L, Zhao X, et al. Development and validation of a combined nomogram for predicting perineural invasion status in rectal cancer via computed tomography-based radiomics. J Cancer Res Ther, 2023, 19(6): 1552-1559.
|
43. |
Guo T, Cheng B, Li Y, et al. A radiomics model for predicting perineural invasion in stage Ⅱ–Ⅲ colon cancer based on computer tomography. BMC Cancer, 2024, 24(1): 1226. doi: 10.1186/s12885-024-12951-x.
|
44. |
Mondal D, Shinde S, Sinha V, et al. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci, 2024, 11: 1385238. doi: 10.3389/fmolb.2024.1385238.
|
45. |
Al Naji H, Winter JM, Pedersen SK, et al. Evaluating the role of methylated circulating tumor DNA in combination with pathological prognostic factors for predicting recurrence of colorectal cancer. Biomark Insights, 2024, 19: 11772719241232870. doi: 10.1177/11772719241232870.
|
46. |
Cho NY, Park JW, Wen X, et al. Blood-based detection of colorectal cancer using cancer-specific DNA methylation markers. Diagnostics (Basel), 2020, 11(1): 51. doi: 10.3390/diagnostics11010051.
|
47. |
国家卫生健康委员会医政司, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2023版). 协和医学杂志, 2023, 14(4): 706-733.
|
48. |
高宇晔, 黄泳霖, 武爱文. 2023年度结直肠癌治疗研究进展. 肿瘤综合治疗电子杂志, 2024, 10(1): 9-18.
|
49. |
Ying H, Shao J, Liao N, et al. The effect of adjuvant chemotherapy on survival in node negative colorectal cancer with or without perineural invasion: a systematic review and meta-analysis. Front Surg, 2023, 10: 1308757. doi: 10.3389/fsurg.2023.1308757.
|
50. |
Chu CH, Lai IL, Jong BK, et al. The prognostic and predictive significance of perineural invasion in stage Ⅰ to Ⅲ colon cancer: a propensity score matching-based analysis. World J Surg Oncol, 2024, 22(1): 129. doi: 10.1186/s12957-024-03405-6.
|
51. |
Alotaibi AM, Lee JL, Kim J, et al. Prognostic and oncologic significance of perineural invasion in sporadic colorectal cancer. Ann Surg Oncol, 2017, 24(6): 1626-1634.
|
52. |
Sun Q, Liu T, Liu P, et al. Perineural and lymphovascular invasion predicts for poor prognosis in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and surgery. J Cancer, 2019, 10(10): 2243-2249.
|
53. |
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol, 2023, 14: 1206136. doi: 10.3389/fphar.2023.1206136.
|
54. |
Hunt PJ, Kabotyanski KE, Calin GA, et al. Interrupting neuron-tumor interactions to overcome treatment resistance. Cancers (Basel), 2020, 12(12): 3741. doi: 10.3390/cancers12123741.
|
55. |
Hernandez S, Serrano AG, Solis Soto LM. The role of nerve fibers in the tumor immune microenvironment of solid tumors. Adv Biol (Weinh), 2022, 6(9): e2200046. doi: 10.1002/adbi.202200046.
|
56. |
Gysler SM, Drapkin R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J Clin Invest, 2021, 131(11): e147276. doi: 10.1172/JCI147276.
|
57. |
Song D, Hou S, Ma N, et al. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: a systematic review and meta-analysis. Front Immunol, 2024, 15: 1485303. doi: 10.3389/fimmu.2024.1485303.
|
58. |
Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol, 2021, 893: 173819. doi: 10.1016/j.ejphar.2020.173819.
|
59. |
Li J, Sun Y, Cao L, et al. Correlation of NPDC1 expression and perineural invasion status with clinicopathological features in patients with colon cancer. Int J Gen Med, 2023, 16: 4549-4563.
|
60. |
Crippa S, Pergolini I, Javed AA, et al. Implications of perineural invasion on disease recurrence and survival after pancreatectomy for pancreatic head ductal adenocarcinoma. Ann Surg, 2022, 276(2): 378-385.
|
61. |
Luo D, Wen YE, Chen H, et al. Implication of perineural invasion in patients with stage Ⅱ gastric cancer. World J Surg Oncol, 2023, 21(1): 372. doi: 10.1186/s12957-023-03236-x.
|
62. |
Tao ZY, Chu G, Su YX. The prognostic role of perineural invasion for survival in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Cancers (Basel), 2024, 16(14): 2514. doi: 10.3390/cancers16142514.
|
63. |
Zou W, Wu D, Wu Y, et al. Nomogram predicts risk of perineural invasion based on serum biomarkers for pancreatic cancer. BMC Gastroenterol, 2023, 23(1): 315. doi: 10.1186/s12876-023-02819-y.
|
64. |
Nikberg M, Chabok A, Letocha H, et al. Lymphovascular and perineural invasion in stage Ⅱ rectal cancer: a report from the Swedish colorectal cancer registry. Acta Oncol, 2016, 55(12): 1418-1424.
|
65. |
Qin L, Heng Y, Deng S, et al. Perineural invasion affects prognosis of patients undergoing colorectal cancer surgery: a propensity score matching analysis. BMC Cancer, 2023, 23(1): 452. doi: 10.1186/s12885-023-10936-w.
|
66. |
Hu G, Li L, Hu K. Clinical implications of perineural invasion in patients with colorectal cancer. Medicine (Baltimore), 2020, 99(17): e19860. doi: 10.1097/MD.0000000000019860.
|
67. |
Kim S, Huh JW, Lee WY, et al. Lymphovascular invasion, perineural invasion, and tumor budding are prognostic factors for stage Ⅰ colon cancer recurrence. Int J Colorectal Dis, 2020, 35(5): 881-885.
|
68. |
Kim YI, Kim CW, Kim JH, et al. Clinical implication of perineural and lymphovascular invasion in rectal cancer patients who underwent surgery after preoperative chemoradiotherapy. Dis Colon Rectum, 2022, 65(11): 1325-1334.
|
69. |
Zhang B, Lin Y, Wang C, et al. Combining perineural invasion with staging improve the prognostic accuracy in colorectal cancer: a retrospective cohort study. BMC Cancer, 2023, 23(1): 675. doi: 10.1186/s12885-023-11114-8.
|
70. |
Kang JH, Son IT, Kim BC, et al. Recurrence-free survival outcomes based on novel classification combining lymphovascular invasion, perineural invasion, and t4 status in stage Ⅱ–Ⅲ colon cancer. Cancer Manag Res, 2022, 14: 2031-2040.
|
71. |
Leijssen LGJ, Dinaux AM, Taylor MS, et al. Perineural invasion is a prognostic but not a predictive factor in nonmetastatic colon cancer. Dis Colon Rectum, 2019, 62(10): 1212-1221.
|
72. |
Kim S, Huh JW, Lee WY, et al. Pulmonary metastasis as the first site of metastasis after curative surgery for colon cancer: incidence and risk factors according to the TNM stage. Dis Colon Rectum, 2024, 67(4): 523-530.
|
73. |
李洪波, 袁静静, 张佃良, 等. 周围神经侵犯与结直肠癌患者预后的相关性分析. 中国现代普通外科进展, 2022, 25(6): 432-435.
|