Citation: 罗汶鑫, 李为民. 肺癌的表观遗传学研究进展及其临床意义. Chinese Journal of Respiratory and Critical Care Medicine, 2018, 17(3): 313-318. doi: 10.7507/1671-6205.201709012 Copy
1. | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin, 2016, 66(1): 7-30. |
2. | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132. |
3. | Esteller. M. Epigenetics in Cancer. N Engl J Med, 2008, 358(11): 1148-1159. |
4. | Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res, 2016, 5(2): 155-171. |
5. | 赵建国, 熊建萍. 非小细胞肺癌驱动基因研究进展. 中国肺癌杂志, 2015, 18(1): 42-47. |
6. | Mehta A, Dobersch S, Romero-Olmedo AJ, et al. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev, 2015, 34(2): 229-241. |
7. | Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 2012, 22(1): 50-55. |
8. | Mari-Alexandre J, Diaz-Lagares A, Villalba M, et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res, 2017, 189: 76-92. |
9. | Sheaffer KL, Elliott EN, Kaestner KH. DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prev Res, 2016, 9(7): 534-546. |
10. | Selamat SA, Galler JS, Joshi AD, et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One, 2011, 6(6): e21443. |
11. | Sandoval J, Mendez-Gonzalez J, Nadal E, et al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J Clin Oncol, 2013, 31(32): 4140-4147. |
12. | Lin RK, Hsu HS, Chang JW, et al. Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer, 2007, 55(52): 205-213. |
13. | Husni RE, Shiba-Ishii A, Iiyama S, et al. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer, 2016, 97: 59-65. |
14. | Kneip C, Schmidt B, Seegebarth A, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol, 2011, 6(10): 1632-1638. |
15. | Hubers AJ, Brinkman P, Boksem RJ, et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis. J Clin Pathol, 2014, 67(8): 707-711. |
16. | Leng S, Do K, Yingling CM, et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin Cancer Res, 2012, 18(12): 3387-3395. |
17. | Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin Cancer Res, 2016, 22(13): 3361-3371. |
18. | Hulbert A, Jusue-Torres, Stark A, et al. Early Detection of Lung Cancer Using DNA Promoter hypermethylation in Plasma and Sputum. Clin Cancer Res, 2017, 23(8): 1998-2005. |
19. | Huang H, Sabari BR, Garcia BA, et al. SnapShot: histone modifications. Cell, 2014, 159(2): 458-458. |
20. | Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin, 2013, 6(1): 24. |
21. | Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1): 12-27. |
22. | Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res, 2008, 14(22): 7237-7245. |
23. | Seligson DB, Horvath S, McBrian MA, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol, 2009, 174(5): 1619-1628. |
24. | Minamiya Y, Ono T, Saito H, et al. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer, 2011, 74(2): 300-304. |
25. | Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169(7): 1187-1200. |
26. | Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42. |
27. | Deng X, Su R, Feng X, et al. Role of N6-methyladenosine modification in cancer. Curr Opin Genet Dev, 2017, 48: 1-7. |
28. | Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120. |
29. | Lin S, Choe J, Du P, et al. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell, 2016, 62(3): 335-345. |
30. | 魏文平, 王芳, 张丽华, 等. 甲基转移酶 3 在非小细胞肺癌组织中的表达及其临床意义. 中国临床研究, 2017, 30(6): 748-751. |
31. | Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res, 2015, 165(1): 74-90. |
32. | Lan H, Lu H, Wang X, et al. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int, 2015, 2015: 125094. |
33. | Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 2013, 73(2): 473-477. |
34. | He XY, Chen JX, Zhang Z, et al. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol, 2010, 136(7): 1023-1028. |
35. | Xia XM, Jin WY, Shi RZ, et al. Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett, 2010, 1(6): 1045-1047. |
36. | Jiang Z, Yin J, Fu W, et al. MiRNA 17 family regulates cisplatin-resistant and metastasis by targeting TGFbetaR2 in NSCLC. PLoS One, 2014, 9(4): e94639. |
37. | Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer, 2012, 130(6): 1378-1386. |
38. | Yu L, Todd NW, Xing L, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer, 2010, 127(12): 2870-2878. |
39. | Cui EH, Li HJ, Hua F, et al. Serum microRNA 125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol Sin, 2013, 34(2): 309-313. |
40. | Zhao Q, Cao J, Wu YC, et al. Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers. Am J Cancer Res, 2015, 5(5): 1692-1705. |
41. | Castillo J, Stueve T, Marconett C. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget, 2017, 8: 81538-81557. |
42. | Zhang R, Xia Y, Wang Z, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun, 2017, 490(2): 406-414. |
43. | Issa JP. DNA methylation as a therapeutic target in cancer. Clin Cancer Res, 2007, 13(6): 1634-1637. |
44. | Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist, 2013, 18(5): 619-624. |
45. | Treppendahl MB, Kristensen LS, Gronbaek K. Predicting response to epigenetic therapy. J Clin Invest, 2014, 124(1): 47-55. |
46. | Liu SV, Fabbri M, Gitlitz BJ, et al. Epigenetic therapy in lung cancer. Front Oncol, 2013, 3: 135. |
47. | Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-Aza-2'-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther, 2010, 9(5): 1443-1450. |
48. | Issa JJ, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol, 2015, 16(9): 1099-1110. |
49. | Du Z, Song J, Wang Y, et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal, 2010, 3(146): ra80. |
50. | Moskowitz AJ, Horwitz SM. Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma, 2017, 58(6): 1306-1319. |
51. | Forde PM, Brahmer JR, Kelly RJ. New strategies in lung cancer: epigenetic therapy for non-small cell lung cancer. Clin Cancer Res, 2014, 20(9): 2244-2248. |
52. | Azad N, Zahnow CA, Rudin CM, et al. The future of epigenetic therapy in solid tumours--lessons from the past. Nat Rev Clin Oncol, 2013, 10(5): 256-266. |
53. | Ahuja N, Easwaran H, Baylin SB. Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest, 2014, 124(1): 56-63. |
54. | Stathis A, Hotte SJ, Chen EX, et al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin's lymphomas. Clin Cancer Res, 2011, 17(6): 1582-1590. |
55. | Juergens RA, Wrangle J, Vendetti FP, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov, 2011, 1(7): 598-607. |
56. | Ramalingam SS, Maitland ML, Frankel P, et al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol, 2010, 28(1): 56-62. |
57. | Han JY, Lee SH, Lee GK, et al. Phase I/II study of gefitinib (Iressa((R))) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol, 2015, 75(3): 475-483. |
58. | Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4): 450-461. |
59. | Wrangle J, Wang W, Koch A, et al. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget, 2013, 4(11): 2067-2079. |
60. | Chiappinelli KB, Zahnow CA, Ahuja N, et al. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res, 2016, 76(7): 1683-1689. |
61. | Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6): 904-917. |
62. | Lockwood WW, Zejnullahu K, Bradner JE, et al. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA, 2012, 109(47): 19408-19413. |
63. | Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483(7390): 474-478. |
64. | Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483(7390): 479-483. |
65. | Ye D, Ma S, Xiong Y, et al. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell, 2013, 23(3): 274-276. |
66. | Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol, 2010, 28(14): 2348-2355. |
67. | Gupta R, Flanagan S, Li CC, et al. Expanding the spectrum of IDH1 mutations in gliomas. Mod Pathol, 2013, 26(5): 619-625. |
68. | Tan F, Jiang Y, Sun N, et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol Cell Proteomics, 2012, 11(2): M111.008821. |
69. | Kim ES. Enasidenib: First Global Approval. Drugs, 2017. |
70. | Park S, Lee J, Lee SY. IDH-Inhibiting Small Molecule DTDQ Inhibits Migration and Invasion of A549 Human Non-Small-Cell Lung Cancer Cells via Sequential Inactivation Of ERK and P38 Signaling Pathways. Cell Biochem Biophys, 2017. |
71. | Mohammad HP, Smitheman KN, Kamat CD, et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell, 2015, 28(1): 57-69. |
72. | Maes T, Mascaro C, Ortega A, et al. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics, 2015, 7(4): 609-626. |
73. | Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet, 2016, 17(10): 630-641. |
74. | Fillmore CM, Xu C, Desai PT, et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature, 2015, 520(7546): 239-242. |
- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin, 2016, 66(1): 7-30.
- 2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
- 3. Esteller. M. Epigenetics in Cancer. N Engl J Med, 2008, 358(11): 1148-1159.
- 4. Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res, 2016, 5(2): 155-171.
- 5. 赵建国, 熊建萍. 非小细胞肺癌驱动基因研究进展. 中国肺癌杂志, 2015, 18(1): 42-47.
- 6. Mehta A, Dobersch S, Romero-Olmedo AJ, et al. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev, 2015, 34(2): 229-241.
- 7. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 2012, 22(1): 50-55.
- 8. Mari-Alexandre J, Diaz-Lagares A, Villalba M, et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res, 2017, 189: 76-92.
- 9. Sheaffer KL, Elliott EN, Kaestner KH. DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prev Res, 2016, 9(7): 534-546.
- 10. Selamat SA, Galler JS, Joshi AD, et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One, 2011, 6(6): e21443.
- 11. Sandoval J, Mendez-Gonzalez J, Nadal E, et al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J Clin Oncol, 2013, 31(32): 4140-4147.
- 12. Lin RK, Hsu HS, Chang JW, et al. Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer, 2007, 55(52): 205-213.
- 13. Husni RE, Shiba-Ishii A, Iiyama S, et al. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer, 2016, 97: 59-65.
- 14. Kneip C, Schmidt B, Seegebarth A, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol, 2011, 6(10): 1632-1638.
- 15. Hubers AJ, Brinkman P, Boksem RJ, et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis. J Clin Pathol, 2014, 67(8): 707-711.
- 16. Leng S, Do K, Yingling CM, et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin Cancer Res, 2012, 18(12): 3387-3395.
- 17. Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin Cancer Res, 2016, 22(13): 3361-3371.
- 18. Hulbert A, Jusue-Torres, Stark A, et al. Early Detection of Lung Cancer Using DNA Promoter hypermethylation in Plasma and Sputum. Clin Cancer Res, 2017, 23(8): 1998-2005.
- 19. Huang H, Sabari BR, Garcia BA, et al. SnapShot: histone modifications. Cell, 2014, 159(2): 458-458.
- 20. Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin, 2013, 6(1): 24.
- 21. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1): 12-27.
- 22. Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res, 2008, 14(22): 7237-7245.
- 23. Seligson DB, Horvath S, McBrian MA, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol, 2009, 174(5): 1619-1628.
- 24. Minamiya Y, Ono T, Saito H, et al. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer, 2011, 74(2): 300-304.
- 25. Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169(7): 1187-1200.
- 26. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42.
- 27. Deng X, Su R, Feng X, et al. Role of N6-methyladenosine modification in cancer. Curr Opin Genet Dev, 2017, 48: 1-7.
- 28. Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481): 117-120.
- 29. Lin S, Choe J, Du P, et al. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell, 2016, 62(3): 335-345.
- 30. 魏文平, 王芳, 张丽华, 等. 甲基转移酶 3 在非小细胞肺癌组织中的表达及其临床意义. 中国临床研究, 2017, 30(6): 748-751.
- 31. Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res, 2015, 165(1): 74-90.
- 32. Lan H, Lu H, Wang X, et al. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int, 2015, 2015: 125094.
- 33. Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 2013, 73(2): 473-477.
- 34. He XY, Chen JX, Zhang Z, et al. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol, 2010, 136(7): 1023-1028.
- 35. Xia XM, Jin WY, Shi RZ, et al. Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett, 2010, 1(6): 1045-1047.
- 36. Jiang Z, Yin J, Fu W, et al. MiRNA 17 family regulates cisplatin-resistant and metastasis by targeting TGFbetaR2 in NSCLC. PLoS One, 2014, 9(4): e94639.
- 37. Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer, 2012, 130(6): 1378-1386.
- 38. Yu L, Todd NW, Xing L, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer, 2010, 127(12): 2870-2878.
- 39. Cui EH, Li HJ, Hua F, et al. Serum microRNA 125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol Sin, 2013, 34(2): 309-313.
- 40. Zhao Q, Cao J, Wu YC, et al. Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers. Am J Cancer Res, 2015, 5(5): 1692-1705.
- 41. Castillo J, Stueve T, Marconett C. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget, 2017, 8: 81538-81557.
- 42. Zhang R, Xia Y, Wang Z, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun, 2017, 490(2): 406-414.
- 43. Issa JP. DNA methylation as a therapeutic target in cancer. Clin Cancer Res, 2007, 13(6): 1634-1637.
- 44. Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist, 2013, 18(5): 619-624.
- 45. Treppendahl MB, Kristensen LS, Gronbaek K. Predicting response to epigenetic therapy. J Clin Invest, 2014, 124(1): 47-55.
- 46. Liu SV, Fabbri M, Gitlitz BJ, et al. Epigenetic therapy in lung cancer. Front Oncol, 2013, 3: 135.
- 47. Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-Aza-2'-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther, 2010, 9(5): 1443-1450.
- 48. Issa JJ, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol, 2015, 16(9): 1099-1110.
- 49. Du Z, Song J, Wang Y, et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal, 2010, 3(146): ra80.
- 50. Moskowitz AJ, Horwitz SM. Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma, 2017, 58(6): 1306-1319.
- 51. Forde PM, Brahmer JR, Kelly RJ. New strategies in lung cancer: epigenetic therapy for non-small cell lung cancer. Clin Cancer Res, 2014, 20(9): 2244-2248.
- 52. Azad N, Zahnow CA, Rudin CM, et al. The future of epigenetic therapy in solid tumours--lessons from the past. Nat Rev Clin Oncol, 2013, 10(5): 256-266.
- 53. Ahuja N, Easwaran H, Baylin SB. Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest, 2014, 124(1): 56-63.
- 54. Stathis A, Hotte SJ, Chen EX, et al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin's lymphomas. Clin Cancer Res, 2011, 17(6): 1582-1590.
- 55. Juergens RA, Wrangle J, Vendetti FP, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov, 2011, 1(7): 598-607.
- 56. Ramalingam SS, Maitland ML, Frankel P, et al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol, 2010, 28(1): 56-62.
- 57. Han JY, Lee SH, Lee GK, et al. Phase I/II study of gefitinib (Iressa((R))) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol, 2015, 75(3): 475-483.
- 58. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4): 450-461.
- 59. Wrangle J, Wang W, Koch A, et al. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget, 2013, 4(11): 2067-2079.
- 60. Chiappinelli KB, Zahnow CA, Ahuja N, et al. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res, 2016, 76(7): 1683-1689.
- 61. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6): 904-917.
- 62. Lockwood WW, Zejnullahu K, Bradner JE, et al. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA, 2012, 109(47): 19408-19413.
- 63. Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483(7390): 474-478.
- 64. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483(7390): 479-483.
- 65. Ye D, Ma S, Xiong Y, et al. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell, 2013, 23(3): 274-276.
- 66. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol, 2010, 28(14): 2348-2355.
- 67. Gupta R, Flanagan S, Li CC, et al. Expanding the spectrum of IDH1 mutations in gliomas. Mod Pathol, 2013, 26(5): 619-625.
- 68. Tan F, Jiang Y, Sun N, et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol Cell Proteomics, 2012, 11(2): M111.008821.
- 69. Kim ES. Enasidenib: First Global Approval. Drugs, 2017.
- 70. Park S, Lee J, Lee SY. IDH-Inhibiting Small Molecule DTDQ Inhibits Migration and Invasion of A549 Human Non-Small-Cell Lung Cancer Cells via Sequential Inactivation Of ERK and P38 Signaling Pathways. Cell Biochem Biophys, 2017.
- 71. Mohammad HP, Smitheman KN, Kamat CD, et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell, 2015, 28(1): 57-69.
- 72. Maes T, Mascaro C, Ortega A, et al. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics, 2015, 7(4): 609-626.
- 73. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet, 2016, 17(10): 630-641.
- 74. Fillmore CM, Xu C, Desai PT, et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature, 2015, 520(7546): 239-242.
-
Previous Article
慢性阻塞性肺疾病合并阻塞性睡眠呼吸暂停交互作用的研究现状 -
Next Article
自噬相关分子机制在肺癌中的作用