1. |
Jha AK. Left ventricular diastolic dysfunction as a predictor of weaning failure from mechanical ventilation. Intensive Care Med, 2020, 46(11): 2121-2122.
|
2. |
Zhyvotovska A, Yusupov D, Kamran H, et al. Diastolic dysfunction in patients with chronic obstructive pulmonary disease: a meta-analysis of case controlled studies. Int J Clin Res Trials, 2019, 4(2): 137.
|
3. |
Roche-Campo F, Bedet A, Vivier E, et al. Cardiac function during weaning failure: the role of diastolic dysfunction. Ann Intensive Care, 2018, 8(1): 2.
|
4. |
Ptm A, Kamu A, Trla A, et al. Left ventricular diastolic dysfunction and exertional ventilatory inefficiency in COPD. Respir Med, 2018, 145: 101-109.
|
5. |
Mocan M, Mocan Hognogi LD, Anton FP, et al. Biomarkers of inflammation in left ventricular diastolic dysfunction. Dis Markers, 2019, 2019: 7583690.
|
6. |
López-Sánchez M, Muñoz-Esquerre M, Huertas D, et al. High prevalence of left ventricle diastolic dysfunction in severe COPD associated with a low exercise capacity: a cross-sectional study. PLoS One, 2013, 8(6): e68034.
|
7. |
Ye J, Wang Z, Ye D, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm, 2019, 2019: 1575410.
|
8. |
Cherneva Z, Valev D, Youroukova V, et al. Left ventricular diastolic dysfunction in non-severe chronic obstructive pulmonary disease - a step forward in cardiovascular comorbidome. PLoS One, 2021, 16(3): e0247940.
|
9. |
Struß N, Bauersachs J, Welte T, et al. Left heart function in COPD. Impact of lung deflation. Herz, 2019, 44(6): 477-482.
|
10. |
Alter P, Watz H, Kahnert K, et al. Airway obstruction and lung hyperinflation in COPD are linked to an impaired left ventricular diastolic filling. Respir Med, 2018, 137: 14-22.
|
11. |
肖伟. 关注支气管舒张药物治疗慢性阻塞性肺疾病患者的心脏获益. 中华结核和呼吸杂志, 2019, 42(11): 810-812.
|
12. |
Hohlfeld JM, Vogel-Claussen J, Biller H, et al. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): a double-blind, randomised, crossover, placebo-controlled, single-centre trial. Lancet Respir Med, 2018, 6(5): 368-378.
|
13. |
赵浩天, 王华伟, 龙玲, 等. 重症患者撤机失败原因与处理. 中国急救医学, 2019, 39(4): 393-397.
|
14. |
El Hadidy S, Saad M, El Hossany R, et al. Coinciding changes in B lines patterns, haemoglobin and hematocrit values can predict outcomes of weaning from mechanical ventilation. Open Access Maced J Med Sci, 2019, 7(23): 4010-4014.
|
15. |
Schmidt GA, Girard TD, Kress JP, et al. Liberation from Mechanical Ventilation in Critically Ill Adults: Executive Summary of an Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline. Chest, 2017, 151(1): 160-165.
|
16. |
Vignon P. Cardiovascular failure and weaning. Ann Transl Med, 2018, 6(18): 354.
|
17. |
Bedet A, Tomberli F, Prat G, et al. Myocardial ischemia during ventilator weaning: a prospective multicenter cohort study. Crit Care, 2019, 23(1): 321.
|
18. |
唐楠. AECOPD患者机械通气诱发心功能障碍的研究进展. 临床肺科杂志, 2018, 23(9): 1728-1731, 1736.
|
19. |
Dres M, Teboul JL, Anguel N, et al. Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med, 2014, 42(8): 1882-1889.
|
20. |
Kushimoto S, Taira Y, Kitazawa Y, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care, 2012, 16(6): R232.
|
21. |
Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care, 2015, 5(1): 38.
|
22. |
Westergren-Thorsson G, Bagher M, Andersson-Sjöland A, et al. VEGF synthesis is induced by prostacyclin and TGF-β in distal lung fibroblasts from COPD patients and control subjects: Implications for pulmonary vascular remodelling. Respirology, 2018, 23(1): 68-75.
|
23. |
Wooten WM, Shaffer LET, Hamilton LA. Bedside ultrasound versus chest radiography for detection of pulmonary edema: a prospective cohort study. J Ultrasound Med, 2019, 38(4): 967-973.
|
24. |
Zapata L, Vera P, Roglan A, et al. B-type natriuretic peptides for prediction and diagnosis of weaning failure from cardiac origin. Intensive Care Med, 2011, 37(3): 477-485.
|
25. |
Haji K, Haji D, Canty DJ, et al. The impact of heart, lung and diaphragmatic ultrasound on prediction of failed extubation from mechanical ventilation in critically ill patients: a prospective observational pilot study. Crit Ultrasound J, 2018, 10(1): 13.
|
26. |
Shafuddin E, Chang CL, Cooray M, et al. Changes in biomarkers of cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease. Respir Med, 2018, 145: 192-199.
|
27. |
Anguel N, Monnet X, Osman D, et al. Increase in plasma protein concentration for diagnosing weaning-induced pulmonary oedema. Intensive Care Med, 2008, 34(7): 1231-1238.
|
28. |
Ferré A, Guillot M, Lichtenstein D, et al. Lung ultrasound allows the diagnosis of weaning-induced pulmonary oedema. Intensive Care Med, 2019, 45(5): 601-608.
|
29. |
Blanco PA, Cianciulli TF. Pulmonary edema assessed by ultrasound: impact in cardiology and intensive care practice. Echocardiography, 2016, 33(5): 778-787.
|
30. |
Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med, 2012, 38(4): 577-591.
|
31. |
Goudelin M, Champy P, Amiel JB, et al. Left ventricular overloading identified by critical care echocardiography is key in weaning-induced pulmonary edema. Intensive Care Med, 2020, 46(7): 1371-1381.
|
32. |
Malerba M, Ragnoli B, Salameh M, et al. Sub-clinical left ventricular diastolic dysfunction in early stage of chronic obstructive pulmonary disease. J Biol Regul Homeost Agents, 2011, 25(3): 443-451.
|
33. |
王小亭, 刘大为, 于凯江, 等. 中国重症超声专家共识. 中华内科杂志, 2016, 55(011): 900-912.
|
34. |
Meirelles Almeida CA, Nedel WL, Morais VD, et al. Diastolic dysfunction as a predictor of weaning failure: a systematic review and meta-analysis. J Crit Care, 2016, 34: 135-141.
|
35. |
Tongyoo S, Thomrongpairoj P, Permpikul C. Efficacy of echocardiography during spontaneous breathing trial with low-level pressure support for predicting weaning failure among medical critically ill patients. Echocardiography, 2019, 36(4): 659-665.
|
36. |
Sorrentino R, Esposito R, Santoro C, et al. Practical impact of new diastolic recommendations on noninvasive estimation of left ventricular diastolic function and filling pressures. J Am Soc Echocardiogr, 2020, 33(2): 171-181.
|
37. |
Liu J, Shen F, Teboul JL, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal. Crit Care, 2016, 20(1): 369.
|
38. |
Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest, 2015, 147(6): 1659-1670.
|
39. |
O'Hara DN, Chabra V, Ahmad S. Bedside ultrasound for guiding fluid removal in patients with pulmonary edema: The Reverse-FALLS Protocol. J Vis Exp, 2018, (137): 57631.
|
40. |
Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med, 2016, 375(19): 1868-1877.
|
41. |
窦志敏, 谢剑锋, 邱海波, 等. 撤机相关心功能不全的预测指标及处理对策. 中华内科杂志, 2013, 52(5): 425-427.
|
42. |
Ouanes-Besbes L, Ouanes I, Dachraoui F, et al. Weaning difficult-to-wean chronic obstructive pulmonary disease patients: a pilot study comparing initial hemodynamic effects of levosimendan and dobutamine. J Crit Care, 2011, 26(1): 15-21.
|
43. |
Bello G, De Santis P, Antonelli M. Non-invasive ventilation in cardiogenic pulmonary edema. Ann Transl Med, 2018, 6(18): 355.
|
44. |
Schmidt GA, Girard TD, Kress JP, et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am J Respir Crit Care Med, 2017, 195(1): 115-119.
|