Citation: 李文彪, 陈沁. 阻塞性睡眠呼吸暂停损害心脏的分子机制研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2025, 24(1): 64-70. doi: 10.7507/1671-6205.202404001 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Epstein LJ, Kristo D, Strollo PJ Jr, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med, 2009, 5(3): 263-276. |
2. | Young T, Palta M, Dempsey J, et al. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ, 2009, 108(5): 246-249. |
3. | Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol, 2013, 177(9): 1006-1014. |
4. | Han Q, Yeung SC, Ip MSM, et al. Cellular mechanisms in intermittent hypoxia-induced cardiac damage in vivo. J Physiol Biochem, 2014, 70(1): 201-213. |
5. | 姚丽霞, 黄黛, 李芳, 等. 阻塞性睡眠呼吸暂停低通气综合征患者心脏结构及左心室功能的变化. 山东医药, 2016, 56(33): 65-67. |
6. | Bao Q, Zhang B, Suo Y, et al. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. Elife, 2020, 9: e49923. |
7. | Guan P, Sun Z, Wang N, et al. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci, 2019, 233: 116748. |
8. | 李亭亭, 郭亚净, 任静, 等. 当归补血汤通过促进线粒体自噬抑制心肌细胞凋亡改善慢性间歇性低氧小鼠心功能. 中国中药杂志, 2022, 47(11): 3066-3072. |
9. | Yang X, Shi Y, Zhang L, et al. Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath, 2019, 23(2): 493-502. |
10. | Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep, 2008, 31(8): 1071-1078. |
11. | Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem, 2015, 97: 55-74. |
12. | Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol, 2014, 24(10): R453-R462. |
13. | Ray PD, Huang B, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990. |
14. | Sarniak A, Lipinska J, Tytman K, et al. Endogenous mechanisms of reactive oxygen species (ROS) generation. Postepy Hig Med Dosw (Online), 2016, 70: 1150-1165. |
15. | Rhee SG. H2O2, a necessary evil for cell signaling. Science, 2006, 312(5782): 1882-1883. |
16. | Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res, 2012, 46(4): 382-419. |
17. | Zhang P, Wang Y, Wang H, et al. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport, 2021, 32(2): 105-111. |
18. | Zhang X, Rui L, Wang M, et al. Sinomenine attenuates chronic intermittent hypoxia-induced lung injury by inhibiting inflammation and oxidative stress. Med Sci Monit, 2018, 24: 1574-1580. |
19. | Li X, Ying H, Zhang Z, et al. Sulforaphane attenuates chronic intermittent hypoxia-induced brain damage in mice via augmenting Nrf2 nuclear translocation and autophagy. Front Cell Neurosci, 2022, 16: 827527. |
20. | Xiong M, Zhao Y, Mo H, et al. Intermittent hypoxia increases ROS/HIF-1α ‘related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int Immunopharmacol, 2021, 100: 108165. |
21. | Zhang H, Zhou L, Zhou Y, et al. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci, 2021, 285: 119963. |
22. | Zhang X, Cheng H, Yuan Y, et al. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY), 2021, 13(14): 18870-18878. |
23. | Guan P, Sun Z, Luo L, et al. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci, 2019, 225: 46-54. |
24. | Itoh K, Ishii T, Wakabayashi N, et al. Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res, 1999, 31(4): 319-324. |
25. | Martin F, Deursen JMV, Shivdasani RA, et al. Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and nrf-2. Blood, 1998, 91(9): 3459-3466. |
26. | Sihvola V, Levonen AL. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys, 2017, 617: 94-100. |
27. | Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. |
28. | Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med, 2015, 88(Pt B): 93-100. |
29. | Sun Z, Guan P, Luo L, et al. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci, 2020, 245: 117362. |
30. | Wang Q, Wang Y, Zhang J, et al. Silencing MR-1 protects against myocardial injury induced by chronic intermittent hypoxia by targeting Nrf2 through antioxidant stress and anti-inflammation pathways. J Healthc Eng, 2022, 2022: 3471447. |
31. | Zhou G, Li X, Hein DW, et al. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol, 2008, 52(8): 655-666. |
32. | Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology, 2003, 189(1-2): 113-127. |
33. | Yin X, Zhou S, Zheng Y, et al. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice. Toxicol Appl Pharmacol, 2014, 277(1): 58-66. |
34. | 周珊珊. Nrf2与MT的协同作用在保护慢性间歇性低氧所致心脏损伤中的作用. 吉林大学, 2015. |
35. | Kajarabille N, Latunde-dada GO. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci, 2019, 20(19): 4968. |
36. | Song J, Zhao Y, Zhen Y, et al. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. Pharm Biol, 2022, 60(1): 609-620. |
37. | Wong HS, Benoit B, Brand MD. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic Biol Med, 2019, 130: 140-150. |
38. | Vermot A, Petit-hartlein I, Smith SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel), 2021, 10(6): 890. |
39. | Wang W, Gu H, Li W, et al. SRC-3 Knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev, 2021, 2021: 6372430. |
40. | Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203): 428-435. |
41. | Yuan X, Deng Y, Guo X, et al. Atorvastatin attenuates myocardial remodeling induced by chronic intermittent hypoxia in rats: partly involvement of TLR-4/MYD88 pathway. Biochem Biophys Res Commun, 2014, 446(1): 292-297. |
42. | Wang Z, Zhu D, Xie S, et al. Inhibition of Rho-kinase Attenuates Left Ventricular Remodeling Caused by Chronic Intermittent Hypoxia in Rats via Suppressing Myocardial Inflammation and Apoptosis. J Cardiovasc Pharmacol, 2017, 70(2): 102-109. |
43. | 王志华. 法舒地尔抑制心肌炎症和凋亡改善间歇低氧诱导心肌重构的研究. 华中科技大学, 2016. |
44. | 杨燕琼, 罗美, 雷清, 等. 阻塞性睡眠呼吸暂停综合征患者外周血ghrelin PTX3 TNF-α IL-6水平与心肌损伤的关系分析. 河北医学, 2021, 27(06): 939-943. |
45. | Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol, 2016, 12(1): 49-62. |
46. | Zhu H, Hu S, Li Y, et al. Interleukins and ischemic stroke. Front Immunol, 2022, 13: 828447. |
47. | Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci, 2019, 20(13): 3328. |
48. | Shao B, Xu Z, Han B, et al. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacology, 2015, 6: 262. |
49. | Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010, 11(2): 136-140. |
50. | 任静. 基于TXNIP/NLRP3信号通路探讨亚麻木酚素改善CIH暴露小鼠心肌损伤的作用及机制. 河北中医学院, 2021. |
51. | 许倡涛. TXNIP介导的心肌微血管内皮细胞NLRP3炎性小体活化在心肌缺血再灌注损伤中的机制研究. 第四军医大学, 2015. |
52. | 林劲榕, 陈沁, 徐顺贵, 等. 益气化痰祛瘀法调控TLR4/MyD88通路改善慢性间歇性缺氧大鼠心肌炎症损伤. 中外医学研究, 2021, 19(22): 3. |
53. | 杜文靖. CCN1在间歇性缺氧诱导心肌细胞炎症反应中的作用研究. 吉林大学, 2022. |
54. | Jun J, Lau LF. CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling. Nat Commun, 2020, 11(1): 1242. |
55. | Kiernan EA, Smith SMC, Mitchell GS, et al. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol, 2016, 594(6): 1563-1577. |
56. | Chen W, Lu X, Chen Y, et al. Steroid receptor coactivator 3 contributes to host defense against enteric bacteria by recruiting neutrophils via upregulation of CXCL2 expression. J Immunol, 2017, 198(4): 1606-1615. |
57. | 胡梓璇. 探讨慢性间歇低氧下CB1R/AMPK/PGC-1α信号通路对心脏及心肌细胞的调控作用. 山西医科大学, 2022. |
58. | 毛英丽, 董震, 马鑫, 等. 探讨慢性间歇性缺氧对小鼠心脏功能影响的机制研究. 中国分子心脏病学杂志, 2017, 17(4): 2180-2183. |
59. | Han Q, Li G, Ip MS, et al. Haemin attenuates intermittent hypoxia‐induced cardiac injury via inhibiting mitochondrial fission. J Cell Mol Med, 2018, 22(5): 2717-2726. |
60. | Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13(4): 251-262. |
61. | Halling JF, Pilegaard H. PGC-1alpha-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab, 2020, 45(9): 927-936. |
62. | 丁文筱, 张蔷, 丁宁, 等. 球形脂联素对间歇低氧所致H9C2细胞损伤的保护作用及机制. 南京医科大学学报(自然科学版), 2022, 42(11): 1523-1529. |
63. | Maeda H, Nagai H, Takemura G, et al. Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart. Biochim Biophys Acta, 2013, 1832(8): 1159-1166. |
64. | 谢晟. 慢性间歇性缺氧诱导大鼠心肌肥厚的自噬机制和药物干预的研究. 华中科技大学, 2017. |
65. | Chen J, Gao J, Sun W, et al. Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol, 2016, 220: 681-692. |
66. | Xue R, Sun L, Yu X, et al. Vagal nerve stimulation improves mitochondrial dynamicsvia an M3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med, 2017, 21(1): 58-71. |
67. | Xia W, Hou M. Macrophage migration inhibitory factor induces autophagy to resist hypoxia/serum deprivation-induced apoptosis via the AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Mol Med Rep, 2016, 13(3): 2619-2626. |
68. | Hu L, Wang J, Zhu H, et al. Ischemic postconditioning protects the heart against ischemia–reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Cell Death Dis, 2016, 7(5): e2222. |
69. | Murase H, Kuno A, Miki T, et al. Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovasc Diabetol, 2015, 14(1): 103. |
70. | Chang W, Cheng J, Chen Z. Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor δ (PPARδ): from bedside to bench. Cardiovasc Diabetol, 2016, 15(1): 113. |
71. | Xie S, Deng Y, Pan YY, et al. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway. Arch Biochem Biophys, 2016, 606: 41-52. |
72. | Riaz TA, Junjappa RP, Handigund M, et al. Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology, calcium, ROS signaling, and metaflammation. Cells, 2020, 9(5): 1160. |
73. | Wadgaonkar P, Chen F. Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Semin Cancer Biol, 2021, 76: 258-266. |
74. | Ajoolabady A, Kaplowitz N, Lebeaupin C, et al. Endoplasmic reticulum stress in liver diseases. Hepatology, 2023, 77(2): 619-639. |
75. | Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol, 2021, 363: 1-20. |
76. | 任洁. 慢性间歇性缺氧引起心血管系统和肝脏损伤的机制及干预研究. 华中科技大学, 2019. |
77. | Singh-mallah G, Nair S, Sandberg M, et al. The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury. Antioxid Redox Signal, 2019, 31(9): 643-663. |
78. | Xu Y, Wang W, Jin K, et al. Perillyl alcohol protects human renal tubular epithelial cells from hypoxia/reoxygenation injury via inhibition of ROS, endoplasmic reticulum stress and activation of PI3K/Akt/eNOS pathway. Biomed Pharmacother, 2017, 95: 662-669. |
79. | Wang H, Wang Z, Ding Y, et al. Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci Ther, 2018, 24(1): 29-38. |
80. | Cui X, Zhang Y, Lu Y, et al. ROS and endoplasmic reticulum stress in pulmonary disease. Front Pharmacol, 2022, 13: 879204. |
81. | Kobayashi T, Kurebayashi N, Murayama T. The ryanodine receptor as a sensor for intracellular environments in muscles. Int J Mol Sci, 2021, 22(19): 10795. |
82. | Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev, 2018, 14(4): 290-300. |
83. | Huang R, Hui Z, Wei S, et al. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis. J Cell Physiol, 2022, 237(1): 118-127. |
84. | Zhang D, Liu Y, Zhu Y, et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol, 2022, 24(5): 766-782. |
85. | Vanhoutte D, Schips TG, Vo A, et al. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nat Commun, 2021, 12(1): 3928. |
86. | Yi S, Chen K, Zhang L, et al. Endoplasmic reticulum stress is involved in stress-induced hypothalamic neuronal injury in rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways. Front Cell Neurosci, 2019, 13: 190. |
87. | Moriguchi M, Watanabe T, Fujimuro M. Capsaicin induces ATF4 translation with upregulation of CHOP, GADD34 and PUMA. Biol Pharm Bull, 2019, 42(8): 1428-1432. |
88. | Hu H, Tian M, Ding C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol, 2019, 9: 3083. |
89. | Gundu C, Arruri VK, Sherkhane B, et al. Indole-3-propionic acid attenuates high glucose induced ER stress response and augments mitochondrial function by modulating PERK-IRE1-ATF4-CHOP signalling in experimental diabetic neuropathy. Arch Physiol Biochem, 2024, 130(3): 243-256. |
90. | Zhang F, Ni Z, Zhao S, et al. Flurochloridone induced cell apoptosis via ER stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax signaling pathways in mouse TM4 sertoli cells. Int J Environ Res Public Health, 2022, 19(8): 4564. |
91. | Del RD, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem, 2007, 282(11): 8069-8078. |
92. | Sun T, Zhang J, Deng B, et al. FOXO1 and FOXO3a sensitize non-small-cell lung cancer cells to cisplatin-induced apoptosis independent of Bim. Acta Biochim Biophys Sin (Shanghai), 2020, 52(12): 1348-1359. |
93. | 李光才. 慢性间歇性缺氧诱导大鼠心脑损伤的机制及药物干预的研究. 华中科技大学, 2018. |
- 1. Epstein LJ, Kristo D, Strollo PJ Jr, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med, 2009, 5(3): 263-276.
- 2. Young T, Palta M, Dempsey J, et al. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ, 2009, 108(5): 246-249.
- 3. Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol, 2013, 177(9): 1006-1014.
- 4. Han Q, Yeung SC, Ip MSM, et al. Cellular mechanisms in intermittent hypoxia-induced cardiac damage in vivo. J Physiol Biochem, 2014, 70(1): 201-213.
- 5. 姚丽霞, 黄黛, 李芳, 等. 阻塞性睡眠呼吸暂停低通气综合征患者心脏结构及左心室功能的变化. 山东医药, 2016, 56(33): 65-67.
- 6. Bao Q, Zhang B, Suo Y, et al. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. Elife, 2020, 9: e49923.
- 7. Guan P, Sun Z, Wang N, et al. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci, 2019, 233: 116748.
- 8. 李亭亭, 郭亚净, 任静, 等. 当归补血汤通过促进线粒体自噬抑制心肌细胞凋亡改善慢性间歇性低氧小鼠心功能. 中国中药杂志, 2022, 47(11): 3066-3072.
- 9. Yang X, Shi Y, Zhang L, et al. Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath, 2019, 23(2): 493-502.
- 10. Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep, 2008, 31(8): 1071-1078.
- 11. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem, 2015, 97: 55-74.
- 12. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol, 2014, 24(10): R453-R462.
- 13. Ray PD, Huang B, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990.
- 14. Sarniak A, Lipinska J, Tytman K, et al. Endogenous mechanisms of reactive oxygen species (ROS) generation. Postepy Hig Med Dosw (Online), 2016, 70: 1150-1165.
- 15. Rhee SG. H2O2, a necessary evil for cell signaling. Science, 2006, 312(5782): 1882-1883.
- 16. Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res, 2012, 46(4): 382-419.
- 17. Zhang P, Wang Y, Wang H, et al. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport, 2021, 32(2): 105-111.
- 18. Zhang X, Rui L, Wang M, et al. Sinomenine attenuates chronic intermittent hypoxia-induced lung injury by inhibiting inflammation and oxidative stress. Med Sci Monit, 2018, 24: 1574-1580.
- 19. Li X, Ying H, Zhang Z, et al. Sulforaphane attenuates chronic intermittent hypoxia-induced brain damage in mice via augmenting Nrf2 nuclear translocation and autophagy. Front Cell Neurosci, 2022, 16: 827527.
- 20. Xiong M, Zhao Y, Mo H, et al. Intermittent hypoxia increases ROS/HIF-1α ‘related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int Immunopharmacol, 2021, 100: 108165.
- 21. Zhang H, Zhou L, Zhou Y, et al. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci, 2021, 285: 119963.
- 22. Zhang X, Cheng H, Yuan Y, et al. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY), 2021, 13(14): 18870-18878.
- 23. Guan P, Sun Z, Luo L, et al. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci, 2019, 225: 46-54.
- 24. Itoh K, Ishii T, Wakabayashi N, et al. Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res, 1999, 31(4): 319-324.
- 25. Martin F, Deursen JMV, Shivdasani RA, et al. Erythroid maturation and globin gene expression in mice with combined deficiency of NF-E2 and nrf-2. Blood, 1998, 91(9): 3459-3466.
- 26. Sihvola V, Levonen AL. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys, 2017, 617: 94-100.
- 27. Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733.
- 28. Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med, 2015, 88(Pt B): 93-100.
- 29. Sun Z, Guan P, Luo L, et al. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci, 2020, 245: 117362.
- 30. Wang Q, Wang Y, Zhang J, et al. Silencing MR-1 protects against myocardial injury induced by chronic intermittent hypoxia by targeting Nrf2 through antioxidant stress and anti-inflammation pathways. J Healthc Eng, 2022, 2022: 3471447.
- 31. Zhou G, Li X, Hein DW, et al. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol, 2008, 52(8): 655-666.
- 32. Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology, 2003, 189(1-2): 113-127.
- 33. Yin X, Zhou S, Zheng Y, et al. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice. Toxicol Appl Pharmacol, 2014, 277(1): 58-66.
- 34. 周珊珊. Nrf2与MT的协同作用在保护慢性间歇性低氧所致心脏损伤中的作用. 吉林大学, 2015.
- 35. Kajarabille N, Latunde-dada GO. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci, 2019, 20(19): 4968.
- 36. Song J, Zhao Y, Zhen Y, et al. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. Pharm Biol, 2022, 60(1): 609-620.
- 37. Wong HS, Benoit B, Brand MD. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic Biol Med, 2019, 130: 140-150.
- 38. Vermot A, Petit-hartlein I, Smith SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel), 2021, 10(6): 890.
- 39. Wang W, Gu H, Li W, et al. SRC-3 Knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev, 2021, 2021: 6372430.
- 40. Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203): 428-435.
- 41. Yuan X, Deng Y, Guo X, et al. Atorvastatin attenuates myocardial remodeling induced by chronic intermittent hypoxia in rats: partly involvement of TLR-4/MYD88 pathway. Biochem Biophys Res Commun, 2014, 446(1): 292-297.
- 42. Wang Z, Zhu D, Xie S, et al. Inhibition of Rho-kinase Attenuates Left Ventricular Remodeling Caused by Chronic Intermittent Hypoxia in Rats via Suppressing Myocardial Inflammation and Apoptosis. J Cardiovasc Pharmacol, 2017, 70(2): 102-109.
- 43. 王志华. 法舒地尔抑制心肌炎症和凋亡改善间歇低氧诱导心肌重构的研究. 华中科技大学, 2016.
- 44. 杨燕琼, 罗美, 雷清, 等. 阻塞性睡眠呼吸暂停综合征患者外周血ghrelin PTX3 TNF-α IL-6水平与心肌损伤的关系分析. 河北医学, 2021, 27(06): 939-943.
- 45. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol, 2016, 12(1): 49-62.
- 46. Zhu H, Hu S, Li Y, et al. Interleukins and ischemic stroke. Front Immunol, 2022, 13: 828447.
- 47. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci, 2019, 20(13): 3328.
- 48. Shao B, Xu Z, Han B, et al. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacology, 2015, 6: 262.
- 49. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010, 11(2): 136-140.
- 50. 任静. 基于TXNIP/NLRP3信号通路探讨亚麻木酚素改善CIH暴露小鼠心肌损伤的作用及机制. 河北中医学院, 2021.
- 51. 许倡涛. TXNIP介导的心肌微血管内皮细胞NLRP3炎性小体活化在心肌缺血再灌注损伤中的机制研究. 第四军医大学, 2015.
- 52. 林劲榕, 陈沁, 徐顺贵, 等. 益气化痰祛瘀法调控TLR4/MyD88通路改善慢性间歇性缺氧大鼠心肌炎症损伤. 中外医学研究, 2021, 19(22): 3.
- 53. 杜文靖. CCN1在间歇性缺氧诱导心肌细胞炎症反应中的作用研究. 吉林大学, 2022.
- 54. Jun J, Lau LF. CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling. Nat Commun, 2020, 11(1): 1242.
- 55. Kiernan EA, Smith SMC, Mitchell GS, et al. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol, 2016, 594(6): 1563-1577.
- 56. Chen W, Lu X, Chen Y, et al. Steroid receptor coactivator 3 contributes to host defense against enteric bacteria by recruiting neutrophils via upregulation of CXCL2 expression. J Immunol, 2017, 198(4): 1606-1615.
- 57. 胡梓璇. 探讨慢性间歇低氧下CB1R/AMPK/PGC-1α信号通路对心脏及心肌细胞的调控作用. 山西医科大学, 2022.
- 58. 毛英丽, 董震, 马鑫, 等. 探讨慢性间歇性缺氧对小鼠心脏功能影响的机制研究. 中国分子心脏病学杂志, 2017, 17(4): 2180-2183.
- 59. Han Q, Li G, Ip MS, et al. Haemin attenuates intermittent hypoxia‐induced cardiac injury via inhibiting mitochondrial fission. J Cell Mol Med, 2018, 22(5): 2717-2726.
- 60. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13(4): 251-262.
- 61. Halling JF, Pilegaard H. PGC-1alpha-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab, 2020, 45(9): 927-936.
- 62. 丁文筱, 张蔷, 丁宁, 等. 球形脂联素对间歇低氧所致H9C2细胞损伤的保护作用及机制. 南京医科大学学报(自然科学版), 2022, 42(11): 1523-1529.
- 63. Maeda H, Nagai H, Takemura G, et al. Intermittent-hypoxia induced autophagy attenuates contractile dysfunction and myocardial injury in rat heart. Biochim Biophys Acta, 2013, 1832(8): 1159-1166.
- 64. 谢晟. 慢性间歇性缺氧诱导大鼠心肌肥厚的自噬机制和药物干预的研究. 华中科技大学, 2017.
- 65. Chen J, Gao J, Sun W, et al. Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol, 2016, 220: 681-692.
- 66. Xue R, Sun L, Yu X, et al. Vagal nerve stimulation improves mitochondrial dynamicsvia an M3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med, 2017, 21(1): 58-71.
- 67. Xia W, Hou M. Macrophage migration inhibitory factor induces autophagy to resist hypoxia/serum deprivation-induced apoptosis via the AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Mol Med Rep, 2016, 13(3): 2619-2626.
- 68. Hu L, Wang J, Zhu H, et al. Ischemic postconditioning protects the heart against ischemia–reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Cell Death Dis, 2016, 7(5): e2222.
- 69. Murase H, Kuno A, Miki T, et al. Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovasc Diabetol, 2015, 14(1): 103.
- 70. Chang W, Cheng J, Chen Z. Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor δ (PPARδ): from bedside to bench. Cardiovasc Diabetol, 2016, 15(1): 113.
- 71. Xie S, Deng Y, Pan YY, et al. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway. Arch Biochem Biophys, 2016, 606: 41-52.
- 72. Riaz TA, Junjappa RP, Handigund M, et al. Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology, calcium, ROS signaling, and metaflammation. Cells, 2020, 9(5): 1160.
- 73. Wadgaonkar P, Chen F. Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Semin Cancer Biol, 2021, 76: 258-266.
- 74. Ajoolabady A, Kaplowitz N, Lebeaupin C, et al. Endoplasmic reticulum stress in liver diseases. Hepatology, 2023, 77(2): 619-639.
- 75. Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol, 2021, 363: 1-20.
- 76. 任洁. 慢性间歇性缺氧引起心血管系统和肝脏损伤的机制及干预研究. 华中科技大学, 2019.
- 77. Singh-mallah G, Nair S, Sandberg M, et al. The role of mitochondrial and endoplasmic reticulum reactive oxygen species production in models of perinatal brain injury. Antioxid Redox Signal, 2019, 31(9): 643-663.
- 78. Xu Y, Wang W, Jin K, et al. Perillyl alcohol protects human renal tubular epithelial cells from hypoxia/reoxygenation injury via inhibition of ROS, endoplasmic reticulum stress and activation of PI3K/Akt/eNOS pathway. Biomed Pharmacother, 2017, 95: 662-669.
- 79. Wang H, Wang Z, Ding Y, et al. Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci Ther, 2018, 24(1): 29-38.
- 80. Cui X, Zhang Y, Lu Y, et al. ROS and endoplasmic reticulum stress in pulmonary disease. Front Pharmacol, 2022, 13: 879204.
- 81. Kobayashi T, Kurebayashi N, Murayama T. The ryanodine receptor as a sensor for intracellular environments in muscles. Int J Mol Sci, 2021, 22(19): 10795.
- 82. Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev, 2018, 14(4): 290-300.
- 83. Huang R, Hui Z, Wei S, et al. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis. J Cell Physiol, 2022, 237(1): 118-127.
- 84. Zhang D, Liu Y, Zhu Y, et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol, 2022, 24(5): 766-782.
- 85. Vanhoutte D, Schips TG, Vo A, et al. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nat Commun, 2021, 12(1): 3928.
- 86. Yi S, Chen K, Zhang L, et al. Endoplasmic reticulum stress is involved in stress-induced hypothalamic neuronal injury in rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways. Front Cell Neurosci, 2019, 13: 190.
- 87. Moriguchi M, Watanabe T, Fujimuro M. Capsaicin induces ATF4 translation with upregulation of CHOP, GADD34 and PUMA. Biol Pharm Bull, 2019, 42(8): 1428-1432.
- 88. Hu H, Tian M, Ding C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol, 2019, 9: 3083.
- 89. Gundu C, Arruri VK, Sherkhane B, et al. Indole-3-propionic acid attenuates high glucose induced ER stress response and augments mitochondrial function by modulating PERK-IRE1-ATF4-CHOP signalling in experimental diabetic neuropathy. Arch Physiol Biochem, 2024, 130(3): 243-256.
- 90. Zhang F, Ni Z, Zhao S, et al. Flurochloridone induced cell apoptosis via ER stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax signaling pathways in mouse TM4 sertoli cells. Int J Environ Res Public Health, 2022, 19(8): 4564.
- 91. Del RD, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem, 2007, 282(11): 8069-8078.
- 92. Sun T, Zhang J, Deng B, et al. FOXO1 and FOXO3a sensitize non-small-cell lung cancer cells to cisplatin-induced apoptosis independent of Bim. Acta Biochim Biophys Sin (Shanghai), 2020, 52(12): 1348-1359.
- 93. 李光才. 慢性间歇性缺氧诱导大鼠心脑损伤的机制及药物干预的研究. 华中科技大学, 2018.
-
Previous Article
心力衰竭患者睡眠呼吸障碍的研究进展 -
Next Article
支气管镜介入治疗在肺移植术后气道并发症的应用研究进展