1. |
武丽杰. 我国孤独症谱系障碍流行病学现状及趋势. 中国实用儿科杂志, 2013, 28(8): 571-576.
|
2. |
Baxter AJ, Brugha TS, Erskine HE, et al. The epidemiology and global burden of autism spectrum disorders. Psychol Med, 2015, 45(3): 601-613.
|
3. |
黎文倩, 刘晓, 代英, 等. 孤独症谱系障碍儿童的诊断年龄及其影响因素. 中国当代儿科杂志, 2018, 20(10): 799-803.
|
4. |
刘贤, 林穗方, 陈文雄, 等. 中国儿童孤独症谱系障碍患病率Meta分析. 中国儿童保健杂志, 2018, 26(4): 402-406, 429.
|
5. |
李爱文, 曾婷, 邓梁琼, 等. 儿童孤独症谱系障碍178例临床分析. 右江医学, 2020, 48(8): 587-591.
|
6. |
Sheldrick RC, Maye MP, Carter AS. Age at first identification of autism spectrum disorder: an analysis of two US surveys. J Am Acad Child Adolesc Psychiatry, 2017, 56(4): 313-320.
|
7. |
Zablotsky B, Colpe LJ, Pringle BA, et al. Age of parental concern, diagnosis, and service initiation among children with autism spectrum disorder. Am J Intellect Dev Disabil, 2017, 122(1): 49-61.
|
8. |
Hosozawa M, Sacker A, Mandy W, et al. Determinants of an autism spectrum disorder diagnosis in childhood and adolescence: evidence from the UK Millennium Cohort Study. Autism, 2020, 24(6): 1557-1565.
|
9. |
MacDuffie KE, Estes AM, Peay HL, et al. The ethics of predicting autism spectrum disorder in infancy. J Am Acad Child Adolesc Psychiatry, 2021, 60(8): 942-945.
|
10. |
Pierce K, Courchesne E, Bacon E. To screen or not to screen universally for autism is not the question: why the Task Force Got It Wrong. J Pediatr, 2016, 176: 182-194.
|
11. |
Anderson CM, Smith T, Wilczynski SM. Advances in school-based interventions for students with autism spectrum disorder: introduction to the special issue. Behav Modif, 2018, 42(1): 3-8.
|
12. |
Kim SH, Bal VH, Benrey N, et al. Variability in autism symptom trajectories using repeated observations from 14 to 36 months of age. J Am Acad Child Adolesc Psychiatry, 2018, 57(11): 837-848.
|
13. |
Shen MD, Nordahl CW, Young GS, et al. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 2013, 136(9): 2825-2835.
|
14. |
Libero LE, Nordahl CW, Li DD, et al. Persistence of megalencephaly in a subgroup of young boys with autism spectrum disorder. Autism Res, 2016, 9(11): 1169-1182.
|
15. |
Emerson RW, Adams C, Nishino T, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med, 2017, 9(393): eaag2882.
|
16. |
Shen MD, Kim SH, McKinstry RC, et al. Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biol Psychiatry, 2017, 82(3): 186-193.
|
17. |
Jin Y, Wee CY, Shi F, et al. Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Hum Brain Mapp, 2015, 36(12): 4880-4896.
|
18. |
Xiao X, Fang H, Wu J, et al. Diagnostic model generated by MRI-derived brain features in toddlers with autism spectrum disorder. Autism Res, 2017, 10(4): 620-630.
|
19. |
Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542(7641): 348-351.
|
20. |
Akhavan AM, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging, 2018, 31(6): 895-903.
|
21. |
Aghdam MA, Sharifi A, Pedram MM. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging, 2019, 32(6): 899-918.
|
22. |
Haweel R, Shalaby A, Mahmoud A, et al. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med Phys, 2021, 48(5): 2315-2326.
|
23. |
Dinstein I, Pierce K, Eyler L, et al. Disrupted neural synchronization in toddlers with autism. Neuron, 2011, 70(6): 1218-1225.
|
24. |
Lombardo MV, Pierce K, Eyler LT, et al. Different functional neural substrates for good and poor language outcome in autism. Neuron, 2015, 86(2): 567-577.
|
25. |
张鹏华. 临床参数和扩散张量成像在孤独症谱系障碍中的研究. 郑州: 郑州大学, 2020.
|
26. |
Shen MD, Nordahl CW, Li DD, et al. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: a case-control study. Lancet Psychiatry, 2018, 5(11): 895-904.
|
27. |
Akshoomoff N, Lord C, Lincoln AJ, et al. Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry, 2004, 43(3): 349-357.
|
28. |
Kim JI, Bang S, Yang JJ, et al. Classification of preschoolers with low-functioning autism spectrum disorder using multimodal MRI data. J Autism Dev Disord, 2022 Jan 4.
|
29. |
Guo X, Wang J, Wang X, et al. Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms. Eur Radiol, 2022, 32(2): 761-770.
|
30. |
Gao K, Sun Y, Niu S, et al. Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging. Autism Res, 2021, 14(12): 2512-2523.
|
31. |
Power JD, Schlaggar BL. Neural plasticity across the lifespan. Wiley Interdiscip Rev Dev Biol, 2017, 6(1): 10.1002/wdev. 216.
|
32. |
Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol, 2015, 66: 173-196.
|
33. |
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: windows of opportunity in the developing brain. Eur J Paediatr Neurol, 2017, 21(1): 23-48.
|
34. |
Pickles A, Anderson DK, Lord C. Heterogeneity and plasticity in the development of language: a 17-year follow-up of children referred early for possible autism. J Child Psychol Psychiatry, 2014, 55(12): 1354-1362.
|
35. |
胡雁. 用于诊断性试验的指标. 中国护理管理, 2019, 19(12): 1832.
|
36. |
Song DY, Topriceanu CC, Ilie-Ablachim DC, et al. Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis. Neuroradiology, 2021, 63(12): 2057-2072.
|
37. |
Li X, Gu Y, Dvornek N, et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med Image Anal, 2020, 65: 101765.
|
38. |
Xu M, Calhoun V, Jiang R, et al. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. J Neurosci Methods, 2021, 361: 109271.
|
39. |
Moon SJ, Hwang J, Kana R, et al. Accuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studies. JMIR Ment Health, 2019, 6(12): e14108.
|
40. |
Dubois J, Alison M, Counsell SJ, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances. J Magn Reson Imaging, 2021, 53(5): 1318-1343.
|
41. |
Wang L, Li G, Adeli E, et al. Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism. Hum Brain Mapp, 2018, 39(6): 2609-2623.
|
42. |
Walsh MJM, Wallace GL, Gallegos SM, et al. Brain-based sex differences in autism spectrum disorder across the lifespan: a systematic review of structural MRI, fMRI, and DTI findings. Neuroimage Clin, 2021, 31: 102719.
|
43. |
Nunes AS, Vakorin VA, Kozhemiako N, et al. Atypical age-related changes in cortical thickness in autism spectrum disorder. Sci Rep, 2020, 10(1): 11067.
|
44. |
Li L, Zuo Y, Chen Y. Relationship between local gyrification index and age, intelligence quotient, symptom severity with autism spectrum disorder: a large-scale MRI study. J Clin Neurosci, 2021, 91: 193-199.
|
45. |
Constantino JN, Charman T. Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression. Lancet Neurol, 2016, 15(3): 279-291.
|
46. |
Feczko E, Balba NM, Miranda-Dominguez O, et al. Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm. Neuroimage, 2018, 172: 674-688.
|
47. |
Girault JB, Piven J. The neurodevelopment of autism from infancy through toddlerhood. Neuroimaging Clin N Am, 2020, 30(1): 97-114.
|
48. |
张俊, 徐志伟, 李克. 诊断性试验Meta分析的效应指标评价. 中国循证医学杂志, 2013, 13(7): 890-5.
|