1. |
Steyerberg, EW. Clinical prediction models: a practical approach to development, validation, and updating. Switzerland: Springer Cham, 2019.
|
2. |
中国心血管病风险评估和管理指南编写联合委员会. 中国心血管病风险评估和管理指南. 中国循环杂志, 2019, 34(1): 4-28.
|
3. |
Bull LM, Lunt M, Martin GP, et al. Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods. Diagn Progn Res, 2020, 4: 9.
|
4. |
Li L, Astor BC, Lewis J, et al. Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis, 2012, 59(4): 504-512.
|
5. |
Hickey GL, Grant SW, Caiado C, et al. Dynamic prediction modeling approaches for cardiac surgery. Circ Cardiovasc Qual Outcomes, 2013, 6(6): 649-658.
|
6. |
Rizopoulos D, Molenberghs G, Lesaffre EMEH. Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom J, 2017, 59(6): 1261-1276.
|
7. |
Li L, Yang Z, Hou Y, et al. Moving beyond the Cox proportional hazards model in survival data analysis: a cervical cancer study. BMJ Open, 2020, 10(7): e033965.
|
8. |
Davis SE, Lasko TA, Chen G, et al. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc, 2017, 24(6): 1052-1061.
|
9. |
Suresh K, Taylor JMG, Spratt DE, et al. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biom J, 2017, 59(6): 1277-1300.
|
10. |
Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc, 2017, 24(1): 198-208.
|
11. |
Welten M, de Kroon MLA, Renders CM, et al. Repeatedly measured predictors: a comparison of methods for prediction modeling. Diagn Progn Res, 2018, 2: 5.
|
12. |
Goldstein BA, Pomann GM, Winkelmayer WC, et al. A comparison of risk prediction methods using repeated observations: an application to electronic health records for hemodialysis. Stat Med, 2017, 36(17): 2750-2763.
|
13. |
翟映红, 陈琪, 韩贺东, 等. 联合模型介绍及在医学研究中的应用. 中华流行病学杂志, 2019, 40(11): 1456-1460.
|
14. |
Ferrer L, Putter H, Proust-Lima C. Individual dynamic predictions using landmarking and joint modelling: validation of estimators and robustness assessment. Stat Methods Med Res, 2019, 28(12): 3649-3666.
|
15. |
Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica, 2004, 14: 809-834.
|
16. |
Rizopoulos D, Hatfield LA, Carlin BP, et al. Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. J Am Stat Assoc, 2014, 109(508): 1385-1397.
|
17. |
Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics, 1997, 53(1): 330-339.
|
18. |
Barrett JK, Sweeting MJ, Wood AM. Dynamic risk prediction for cardiovascular disease: an illustration using the ARIC study. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0169716117300044.
|
19. |
McCrink LM, Marshall AH, Cairns KJ. Advances in joint modelling: a review of recent developments with application to the survival of end stage renal disease patients. International Statistical Review, 2013, 81(2): 249-269.
|
20. |
Gleiss A, Oberbauer R, Heinze G. An unjustified benefit: immortal time bias in the analysis of time-dependent events. Transpl Int, 2018, 31(2): 125-130.
|
21. |
van Houwelingen HC, Putter H. Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Anal, 2008, 14(4): 447-463.
|
22. |
van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 2007, 34(1): 70-85.
|
23. |
Anderson JR, Cain KC, Gelber RD. Analysis of survival by tumor response. J Clin Oncol, 1983, 1(11): 710-719.
|
24. |
Huang X, Yan F, Ning J, et al. A two-stage approach for dynamic prediction of time-to-event distributions. Stat Med, 2016, 35(13): 2167-2182.
|
25. |
Zheng Y, Heagerty PJ. Partly conditional survival models for longitudinal data. Biometrics, 2005, 61(2): 379-391.
|
26. |
Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics, 2002, 3(4): 511-528.
|
27. |
Nicolaie MA, van Houwelingen JC, de Witte TM, et al. Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks. Biometrics, 2013, 69(4): 1043-1052.
|
28. |
Bansal A, Heagerty PJ. A comparison of landmark methods and time-dependent ROC methods to evaluate the time-varying performance of prognostic markers for survival outcomes. Diagn Progn Res, 2019, 3: 14.
|
29. |
Dafni U. Landmark analysis at the 25-year landmark point. Circ Cardiovasc Qual Outcomes, 2011, 4(3): 363-371.
|
30. |
Halabi S, Li C, Luo S. Developing and validating risk assessment models of clinical outcomes in modern oncology. JCO Precis Oncol, 2019, 3: PO.19.00068.
|
31. |
Morgan CJ. Landmark analysis: a primer. J Nucl Cardiol, 2019, 26(2): 391-393.
|
32. |
Grand MK, de Witte TJM, Putter H. Dynamic prediction of cumulative incidence functions by direct binomial regression. Biom J, 2018, 60(4): 734-747.
|
33. |
Kim S, Chen MH, Dey DK, et al. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal, 2007, 13(1): 17-35.
|
34. |
Howle LE, Weber PW, Nichols JM. Bayesian approach to decompression sickness model parameter estimation. Comput Biol Med, 2017, 82: 3-11.
|
35. |
Alsefri M, Sudell M, García-Fiñana M, et al. Bayesian joint modelling of longitudinal and time to event data: a methodological review. BMC Med Res Methodol, 2020, 20(1): 94.
|
36. |
Yang M, Luo S, DeSantis S. Bayesian quantile regression joint models: inference and dynamic predictions. Stat Methods Med Res, 2019, 28(8): 2524-2537.
|
37. |
He J, McGee DL, Niu X. Application of the Bayesian dynamic survival model in medicine. Stat Med, 2010, 29(3): 347-360.
|
38. |
Li H, Weng J, Mao Y, et al. Adaptive dropout method based on biological principles. IEEE Trans Neural Netw Learn Syst, 2021, 32(9): 4267-4276.
|
39. |
Andrinopoulou ER, Rizopoulos D, Jin R, et al. An introduction to mixed models and joint modeling: analysis of valve function over time. Ann Thorac Surg, 2012, 93(6): 1765-1772.
|
40. |
Parast L, Mathews M, Friedberg MW. Dynamic risk prediction for diabetes using biomarker change measurements. BMC Med Res Methodol, 2019, 19(1): 175.
|