1. |
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55.
|
2. |
王永吉, 蔡宏伟, 夏结来, 等. 倾向指数第一讲倾向指数的基本概念和研究步骤. 中华流行病学杂志, 2010, 31(3): 347-348.
|
3. |
CSCO生物统计学专家委员会RWS方法学组. 倾向性评分方法及其规范化应用的统计学共识. 中国卫生统计, 2020, 37(6): 952-958.
|
4. |
吴美京, 吴骋, 王睿, 等. 倾向性评分法中评分值的估计方法及比较. 中国卫生统计, 2013, 30(3): 440-444.
|
5. |
McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods, 2004, 9(4): 403-425.
|
6. |
黎国威, 张玲, 陈裕明, 等. 倾向性评分方法在观察性研究中的应用. 中国循证医学杂志, 2021, 21(4): 469-474.
|
7. |
王永吉, 蔡宏伟, 夏结来, 等. 倾向指数第二讲倾向指数常用研究方法. 中华流行病学杂志, 2010, 31(5): 584-585.
|
8. |
李智文, 刘建蒙, 任爱国. 基于个体的标准化法—倾向评分加权. 中华流行病学杂志, 2010, 31(2): 223-226.
|
9. |
Robins JM, Rotnitzky A. Semiparametric efficiency in multivariate regression-models with missing data. J Am Stat Assoc, 1995, 90(429): 122-129.
|
10. |
Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression-models for repeated outcomes in the presence of missing data. J Am Stat Assoc, 1995, 90(429): 106-121.
|
11. |
Li F, Thomas LE, Li F. Addressing extreme propensity scores via the overlap weights. Am J Epidemiol, 2019, 188(1): 250-257.
|
12. |
Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. J Am Stat Assoc, 2018, 113(521): 390-400.
|
13. |
秦宇辰, 郭威, 阮一鸣, 等. 重叠加权法在医学研究混杂因素控制中的应用. 中国卫生统计, 2020, 37(3): 363-366.
|
14. |
Desai RJ, Franklin JM. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. BMJ, 2019, 367: l5657.
|
15. |
Mlcoch T, Hrnciarova T, Tuzil J, et al. Propensity score weighting using overlap weights: a new method applied to regorafenib clinical data and a cost-effectiveness analysis. Value Health, 2019, 22(12): 1370-1377.
|
16. |
Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika, 2000, 87(3): 706-710.
|
17. |
Li F. Propensity score weighting for causal inference with multiple treatments. Ann Appl Stat, 2019, 13(4): 2389-2415.
|
18. |
Austin PC. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Med Decis Making, 2009, 29(6): 661-677.
|
19. |
Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med, 2007, 26(4): 734-753.
|
20. |
Zhang Z, Kim HJ, Lonjon G, et al. Balance diagnostics after propensity score matching. Ann Transl Med, 2019, 7(1): 16.
|
21. |
王永吉, 蔡宏伟, 夏结来, 等. 倾向指数第三讲应用中的关键问题. 中华流行病学杂志, 2010, 31(7): 823-825.
|
22. |
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat, 2001, 29(5): 1189-1232.
|
23. |
Harder VS, Morral AR, Arkes J. Marijuana use and depression among adults: Testing for causal associations. Addiction, 2006, 101(10): 1463-1472.
|
24. |
Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychol Methods, 2010, 15(3): 234-249.
|
25. |
Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med, 1997, 127(8 Pt 2): 757-763.
|