1. |
Tan J, Xiong Y, Qi Y, et al. Data resource profile: Xiamen registry of pregnant women and offspring (REPRESENT): a population-based, long-term follow-up database linking four major healthcare data platforms. Int J Epidemiol, 2021, 50(1): 27-28.
|
2. |
张沂洁, 朱燕, 陈超. 早产儿发生率及变化趋势. 中华新生儿科杂志, 2021, 36(4): 74-77.
|
3. |
中华医学会妇产科学分会产科学组, 中华医学会围产医学分会. 产后出血预防与处理指南(2023). 中华妇产科杂志, 2023, 58(6): 401-409.
|
4. |
沈忠周, 王雅文, 马帅, 等. 新生儿早产、低出生体重及小于胎龄的危险因素. 中华流行病学杂志, 2019, 40(9): 1125-1129.
|
5. |
Welten M, de Kroon MLA, Renders CM, et al. Repeatedly measured predictors: a comparison of methods for prediction modeling. Diagn Progn Res, 2018, 2: 5.
|
6. |
Maruyama N, Takahashi F, Takeuchi M. Prediction of an outcome using trajectories estimated from a linear mixed model. J Biopharm Stat, 2009, 19(5): 779-790.
|
7. |
Chen YH, Ferguson KK, Meeker JD, et al. Statistical methods for modeling repeated measures of maternal environmental exposure biomarkers during pregnancy in association with preterm birth. Environ Health, 2015, 14: 9.
|
8. |
Bull LM, Lunt M, Martin GP, et al. Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods. Diagn Progn Res, 2020, 4: 9.
|
9. |
冯国双. 观察性研究中的logistic回归分析思路. 中华流行病学杂志, 2019, 40(8): 1006-1009.
|
10. |
Galwey NW. Introduction to mixed modelling: beyond regression and analysis of variance. New York: John Wiley & Sons, 2014.
|
11. |
杨珉, 张菊英. 多水平统计模型及其在预防和临床医学中的应用. 北京: 中国统计出版社, 2023.
|
12. |
Tu YK, Tilling K, Sterne JA, et al. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. Int J Epidemiol, 2013, 42(5): 1327-1339.
|
13. |
Albert PS. A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification. Stat Med, 2012, 31(2): 143-154.
|
14. |
石慧峰, 陈练, 王晓霞, 等. 2016-2019年中国严重产后出血的流行病学现状和变化趋势. 中华妇产科杂志, 2021, 56(7): 451-457.
|
15. |
Pettersen S, Falk RS, Vangen S, et al. Exploring trends of severe postpartum haemorrhage: a hospital-based study. BMC Pregnancy Childbirth, 2023, 23(1): 363.
|
16. |
Wang S, Dai Y, Shen J, et al. Research on expansion and classification of imbalanced data based on SMOTE algorithm. Sci Rep, 2021, 11(1): 24039.
|
17. |
Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly imbalanced data using random forest. BMC Med Inform Decis Mak, 2011, 11: 51.
|
18. |
Chen X, Chen H, Nan S, et al. Dealing with missing, imbalanced, and sparse features during the development of a prediction model for sudden death using emergency medicine data: machine learning approach. JMIR Med Inform, 2023, 11: e38590.
|
19. |
van den Goorbergh R, van Smeden M, Timmerman D, et al. The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression. J Am Med Inform Assoc, 2022, 29(9): 1525-1534.
|