王艺,
Email: yiwang@shmu.edu.cn
癫痫是一种以反复发作的痉挛为特点的严重的神经系统疾病。它是由多种原因导致的,主要有遗传因素、脑损伤及环境因素,但是具体发病机制还不清楚。遗传性癫痫家族研究发现癫痫是由一些编码离子通道以及神经递质受体蛋白的基因突变导致的。随着技术进步和研究深入,逐渐发现癫痫遗传不仅由离子通道和神经递质基因控制,还受突触小泡转运通路,染色质重塑和转录,mTOR蛋白信号通路等相关基因,染色体拷贝数变异及表观遗传学的影响。该文主要讨论癫痫相关基因、染色体异常和表观遗传学对癫痫发生的影响。
Citation: 胡子英, 王红艳, 王艺. 癫痫遗传学及表观遗传学研究进展. Journal of Epilepsy, 2016, 2(6): 515-522. doi: 10.7507/2096-0247.20160091 Copy
1. | Tian M, Macdonald RL. The intronic GABRG2 mutation, IVS6+2T->G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated gamma2 subunit. J Neurosci, 2012, 32(6):5937-5952. |
2. | Prasad AN, Prasad C. Genetic influences on the risk for epilepsy. In Pediatric Epilepsy. Edited by Pellock JM, Bourgeois BFD, Dodson WE.et al.:New York:Demos. 2008:117-134. |
3. | Sigurdardottir L, Poduri A. Inherited epilepsies. In Neurogenetics:Scienti? c and Clinical Advances. Edited by Lynch DR. New York:Taylor and Francis. 2006:427-467. |
4. | Steinlein OK. Genes and mutations in human idiopathic epilepsy. Brain Dev, 2004, 26(3):213-218. |
5. | Newmark ME, Penry JK. Genetics of Epilepsy:A Review New York:Raven Press; 1980. |
6. | Frankel WN. Genetics of complex neurological disease:challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet, 2009, 5:361-367. |
7. | Lerche H, Jurkat-Rott K, Lehmann-Hom F. Ion channels and epilepsy. Am J Med Genet. 2001, 106(2):146-159. |
8. | Gribkoff VK.The therapeutic potential of neuronal KCNQ channel modulators. Expert Opin Ther Targets. 2003, 7(6):737-748. |
9. | Singh NA,Westenskow P,Charlier C,et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions:expansion of the functional and mutation spectrum..Brain. 2003, 126(12):2726-37. |
10. | Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet, 1998, 19(6):366-370. |
11. | Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+. Nat Genet, 2000, 24(7):343-345. |
12. | Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha Ⅱ subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA, 2001, 98(11):6384-6389. |
13. | Baulac S, Huberfeld G, Gourenkel-An I. First genetic evidence of GABA(A) receptor dysfunction in epilepsy:a mutation in the gamma2-subunit gene. Nat Genet, 2001, 28(7):46-48. |
14. | Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra-or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet, 2004, 13(7):1315-1319. |
15. | Meisler MH, O'Brien JE, Sharkey LM. Sodium channel gene family:epilepsy mutations, gene interactions and modifier effects. J Physiol, 2010, 588(3):1841-1848. |
16. | Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy:mutations and mechanisms. Epilepsia, 2010, 51(2):1650-1658. |
17. | Veeramah KR, O'Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet, 2012, 90(4):502-510. |
18. | Larsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015, 84(2):480-489. |
19. | Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia, 2014, 55(5):994-1000. |
20. | de Kovel CG, Meisler MH, Brilstra EH, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res, 2014, 108(3):1511-1518. |
21. | Estacion M, O'Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis, 2014, 69(8):117-123. |
22. | Gardella E. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol, 2016, 79(3):428-436. |
23. | De Fusco M. The nicotinic receptors b2 submit is mutant in noctural frontal lobe epilepsy. Nat Genet, 2000, 26(2):275-276. |
24. | Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol, 2006, 59(3):983-987. |
25. | Tanaka M, DeLorey TM, Delgado-Escueta A. GABRB3, Epilepsy and Neurodevelopment. In:Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies, 4th Edn. National Center for Biotechnology Information, Bethesda, 2012:895-1201. |
26. | Urak L, FeuchtM, Fathi N, et al. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet, 2006, 15(2):2533-2541. |
27. | Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet, 2008, 82(10):1249-1261. |
28. | Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra-or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet, 2004, 13(1):1315-1319. |
29. | Lenzen KP, Heils A, Lorenz S, et al. Association analysis of the Arg220His variation of the human gene encoding the GABA delta subunit with idiopathic generalized epilepsy. Epilepsy Res, 2005, 65(2):53-57. |
30. | Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001, 28(8):49-52. |
31. | Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol, 2003, 54(10):239-243. |
32. | Reid CA, Berkovic SF, Petrou S. Mechanisms of human inherited epilepsies. Prog Neurobiol, 2009, 87(2):41-57. |
33. | Haug K,Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet, 2003, 33(2):527-532. |
34. | Berkovic SF, Howell RA, Hay DA. Epilepsies in twins:genetics of the major epilepsy syndromes. Ann Neurol, 1998, 43(4):435-445. |
35. | Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet, 2008, 40 (6):782-788. |
36. | Hamdan FF, Piton A, Gauthier J, et al. De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol, 2009, 65(7):748-753. |
37. | Schubert J, Siekierska A, Langlois M, et al. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet, 2014, 46(3):1327-1332. |
38. | Rohena L, Neidich J, Truitt Cho M, et al. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis, 2013, 10(1):e26314. |
39. | Alazami AM, Hijazi H, Kentab AY, et al. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J Med Genet, 2014, 51(3):224-228. |
40. | Euro EPINOMICS-RES Consortium. Epilepsy Phenome/Genome Project, and Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet, 2014, 95(2):360-370. |
41. | Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet, 2013, 45(5):825-830. |
42. | Thomas RH, Zhang LM, Carvill GL, et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology, 2015, 84(11):951-958. |
43. | Suls A, Jaehn JA, Kecskés A, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet, 2013, 93(10):967-975. |
44. | Lund C, Brodtkorb E, Selmer KK. CHD2 mutations in Lennox-Gastaut syndrome. Epilepsy Behav, 2014, 33(2):18-21. |
45. | Epileptic Consortium & Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature, 2013, 501(22):217-221. |
46. | Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 2012, 485(10):242-245. |
47. | Crino PB. mTOR signaling in epilepsy:insights from malformations of cortical development. Cold Spring Harb Perspect Med, 2015, 5(3):a022442. |
48. | Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type Ⅱ leading to intractable epilepsy. Nat Med, 2015, 21(8):395-400. |
49. | Dibbens LM, de Vries B, Donatello S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet, 2013, 45(3):546-551. |
50. | Ishida S, Picard F, Rudolf G, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet, 2013, 45(2):552-555. |
51. | Nascimento FA. Two definite cases of sudden unexpected death in epilepsy in a family with a DEPDC5 mutation. Neurol Genet, 2015, 1(4):e28. |
52. | Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type Ⅱ leading to intractable epilepsy. Nat Med, 2015, 21(5):395-400. |
53. | Kato M, Das S, Petras K, et al. Polyalanine expansion of ARX associated with cryptogenic West syndrome. Neurology, 2003, 61 (2):267-276. |
54. | Stromme P, Mangelsdorf ME, Shaw MA, et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet, 2002, 30 (4):441-445. |
55. | Giordano L, Sartori S, Russo S,et al. Familial Ohtahara syndrome due to a novel ARX gene mutation. Am J Med Genet, 2010, 121 (12):3133-3137. |
56. | Kato M, Koyama N, Ohta M, et al. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia, 2010, 51 (9):1679-1684. |
57. | Demos MK, Fullston T, Partington MW, et al. Clinical study of two brothers with a novel 33bp duplication in the ARX gene. Am J Med Genet, 2009, 149(4):1482-1486. |
58. | Eksioglu YZ, Pong AW, Takeoka M. A novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in famales. Epilepsia, 2011, 52(5):984-992. |
59. | Archer HL, Evans J, Edwards S, et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet, 2006, 43(2):729-734. |
60. | Bahi-Buisson N, Nectoux J, Rosas-Vargas H, et al. Key clinical features to identify girls with CDKL5 mutations. Brain, 2008, 131(4):2647-2661. |
61. | Bahi-Buisson N, Bienvenu T. CDKL5-related disorders:from clinical description to molecular genetics. Mol Syndromol, 2012, 2(3/5):147-152. |
62. | Bahi-Buisson N, Kaminska A, Boddaert N, et al. The three stages of epilepsy in patients with CDKL5mutations. Epilepsy, 2008, 49(6):1027-1037. |
63. | Dibbens LM, Tarpey PS, Hynes K, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet, 2008, 40 (6):776-781. |
64. | Depienne C, Trouillard O, Bouteiller D, et al. Mutations and deletions in PCDH19 account for various familial or isolated epilepsies in females. Hum Mutat, 2011, 32 (1):E1959-E1975. |
65. | Colin E. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. The American Journal of Human Genetics, 2016, 26(3):695-703. |
66. | Johansen, A. Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, lead to intellectual disability accompanied by epilepsy and autistic features. The American Journal of Human Genetics, 2016, 26(7):1016-1019. |
67. | Raviglione F. Clinical findings in a patient with FARS2 mutations and early-infantile-encephalopathy with epilepsy. American Journal of Medical Genetics, 2016, 19(Pt A):1-4. |
68. | Frasa MA, Koessmeier KT, Ahmadian MR. Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol, 2012, 13(3):67-73. |
69. | Corbet MA. A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet, 2010, 87(2):371-375. |
70. | Falace A. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet, 2010, 87(2):365-370. |
71. | Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet, 2013, 50(2):199-202. |
72. | Milh M. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat, 2013, 34(1):869-872. |
73. | Muona M. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 2015, 47(3):39-46. |
74. | Poulat AL. Homozygous TBC1D24 mutation in two siblings with familial infantile myoclonic epilepsy (FIME) and moderate intellectual disability. Epilepsy Res, 2015, 111(2):72-77. |
75. | Azaiez H. TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss. Hum Mutat, 2014, 35(2):819-823. |
76. | Bakhchan A. Recessive TBC1D24 mutations are frequent in Moroccan non-syndromic hearing loss pedigrees. PLoS ONE, 2015, 124(10):e0138072. |
77. | Stražišar BG, Neubauer D, Paro Panjan. Early-onset epileptic encephalopathy with hearing loss in two siblings with TBC1D24 recessive mutations. Eur J Paediatr Neurol, 2015, 19(3):251-256. |
78. | Zhang L, Hu L, Chai Y. A dominant mutation in the stereocilia-expressing gene TBC1D24 is a probable cause for non-syndromic hearing impairment. Hum Mutat, 2014, 35(8):814-818. |
79. | Doummar D. A novel homozygous TBC1D24 mutation causing multifocal myoclonus with cerebellar involvement. Mov Disord, 2015, 30(2):1431-1432. |
80. | Campeau PM. DOORS syndrome:phenotype, genotype and comparison with Coffn-Siris syndrome. Am J Hum Genet, 2014, 91(6):327-332. |
81. | Campeau PM.The genetic basis of DOORS syndrome:an exome-sequencing study. Lancet Neurol, 2014, 104(13):44-58. |
82. | Fischer B. Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nature Structural & Molecular Biology, 2016, 65(3):3297-3311. |
83. | de Kovel CG, Trucks H, Helbig I, et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 2010, 133(4):23-32. |
84. | Dibbens LM, Mullen S, Helbig I, et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy:precedent for disorders with complex inheritance. Hum Mol Gene, 2009, 18(1):3626-3631. |
85. | Heinzen EL, Radtke RA, Urban TJ, et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet, 2010, 86(2):707-718. |
86. | Lal D, Trucks H, Møller RS, et al. Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy. Epilepsia, 2013, 54(7):265-271. |
87. | Lionel AC, Vaags AK, Sato D, et al. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet, 2013, 22(1):2055-2066. |
88. | Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet, 2013, 45(2):825-830. |
89. | Thomas RH, Zhang LM, Carvill GL, et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology, 2015, 84(4):951-958. |
90. | Verhoeven WM. Absence epilepsy and the CHD2 gene:an adolescent male with moderate intellectual disability, short-lasting psychoses, and an interstitial deletion in 15q26.1-q26.2. Neuropsychiatr Dis Treat, 2016, 12(1):1135-1139. |
91. | Carvill GL, McMahon JM, Schneider A, et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonicatonic seizures. Am J Hum Genet, 2015, 96(7):808-815. |
92. | Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 2009, 323(1):1074-1077. |
93. | Jakovcevski M, Akbarian S. Epigeneticmechanisms in neurological disease. Nat Med, 2012, 18(2):1194-1204. |
94. | Qureshi IA, Mehler MF. Understanding neurological diseasemechanisms in the era of epigenetics. JAMA Neurol, 2013, 70(1):703-710. |
95. | Kobow K, Blumcke I. The emerging role of DNA methylation in epileptogenesis. Epilepsia, 2012, 53(4):11-20. |
96. | Lubin FD. Epileptogenesis:Can the science of epigenetics give us answers? Epilepsy Curr, 2012, 12(4):105-110. |
97. | Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci, 2013, 6(7):1-11. |
98. | Detlev Boison, The biochemistry and epigenetics of epilepsy:focus on adenosine and glycine. Frontiers in Molecular Neuroscience, 2016, 26(7):1-7. |
99. | Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33 (Suppl):245-254. |
100. | Robertson KD. DNA methylation and human disease. Nat Rev Genet, 2005, 6(4):597-610. |
101. | Choo KB.Epigenetics in disease and cancer. Malays J Pathol, 2011, 33(2):61-70. |
102. | Martinowich K, Hattori D,Wu H. DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science, 2003, 302(1):890-893. |
103. | Guo JU, Ma DK, Mo H, et al. Neuronal activity modi? es the DNA methylation landscape in the adult brain. Nat Neurosci, 2011, 14(5):1345-1351. |
104. | Kobow K, Jeske I, Hildebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol, 2009, 68(2):356-364. |
105. | Kobow K, Kaspi A, Harikrishnan KN, et al., Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol, 2013, 126(8):741-756. |
106. | Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci, 2012, 46(4):420-426. |
107. | Williams-Karnesky RL, Sandau US, Lusardi TA, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest, 2013, 123(7):3552-3563. |
108. | Miller-Delaney SF, Bryan K, Das S, et al., Differential DNA methylation profiles of coding and noncoding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138(4):616-631. |
109. | Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 2009, 323(7):1074-1077. |
110. | Feng J, Zhou Y, Campbell SL, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 2010, 13(1):423-430. |
111. | Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis:a new target of disease mechanisms. Neurotherapeutics, 2013, 10(7):722-733. |
112. | Masliah E, Dumaop W, Galasko D. Distinctive patterns of DNA methylation associated with Parkinson disease:identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics, 2013, 8(1):1030-1038. |
113. | Coppieters N, Dieriks BV, Lill C. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging, 2014, 35(7):1334-1344. |
114. | Tremolizzo L, Messina P, Conti E, et al. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener, 2014, 15(7):98-105. |
115. | Kobow K. The methylation hypothesis:do epigenetic chromatin modifications play a role in epileptogenesis?. Epilepsia, 2011, 52(8):15-19. |
116. | Amir RE, Van den Veyver IB, Wan M. Rett syndrome is caused by mutations in X-linkedMECP2, encodingmethyl-CpG-binding protein 2. Nat Genet, 1999, 23(7):185-188. |
117. | Maxwell SS, Pelka GJ, Tam PP. Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol, 2013, 10(1):1741-1757. |
118. | Gadalla KK,Bailey ME,Cobb SR.MeCP2 and Rett syndrome:reversibility and potential avenues for therapy. Biochem J, 2011, 439(1):1-14. |
119. | Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci, 2012, 46(3):420-426. |
120. | Ryley Parrish R, Albertson AJ, Buckingham SC, et al. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience, 2013, 248(1):602-619. |
121. | Miller-Delaney SF, Das S, Sano T, et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci, 2012, 32(7):1577-1588. |
122. | Henshall DC, Sinclair J, Simon RP. Relationship between seizure-induced transcription of the DNA damage-inducible gene GADD45, DNA fragmentation, and neuronal death in focally evoked limbic epilepsy. J Neurochem, 1999, 73(2):1573-1583. |
123. | Henshall DC, Kobow K. Epigenetics and epilepsy. Cold Spring Harb Perspect Med, 2015, 5(1):a022731. |
124. | Tao J, Wu H, Lin Q, et al. Deletion of astroglial dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci, 2011, 31(2):8306-8319. |
125. | Tan CL, Plotkin JL, Veno MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science, 2013, 342(1):1254-1258. |
126. | Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med, 2012, 18(2):1087-1094. |
127. | Roncon P, SoukupovaM, Binaschi A, et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy-comparison with human epileptic samples. Sci Rep, 2015, 5(2):141-143. |
128. | Kan AA, van Erp S, Derijck AA, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. CellMol Life Sci, 2012, 69(11):3127-3145. |
129. | Risbud RM, Porter BE. Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS ONE, 2013, 41(8):e53464. |
130. | Gorter JA, Iyer A, White I, et al. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis, 2014, 62(2):508-520. |
131. | Haenisch S, Zhao Y, Chhibber A, et al. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and nonfocal brain tissue of therapy-resistant epilepsy patients. Neurobiol Dis, 2015, 77(7):127-140. |
132. | Kretschmann A, Danis B, Andonovic L, et al. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci, 2015, 55(12):466-479. |
133. | Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol, 2002, 128(2):58-68. |
134. | Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci, 2010, 31(1):1100-1107. |
135. | Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a:a key regulator of astrocyte-mediated inflammatory response. PLoS ONE, 2012, 38(7):e44789. |
136. | Bot AM, Debski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS ONE, 2013, 39(8):e76051. |
137. | McKiernan RC, Jimenez-Mateos EM, Bray I, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS ONE, 2012, 38(7):e35921. |
138. | Rossato M, Curtale G, Tamassia N, et al. IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA, 2012, 109(2):3101-3110. |
139. | Song YJ, Tian XB, Zhang S, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res, 2011, 1387(7):134-140. |
140. | Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci, 2013, 51(4):950-958. |
141. | McKiernan RC, Jimenez-Mateos EM, Sano T, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol, 2012, 237(1):346-354. |
142. | Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA, 2009, 106(3):5282-5287. |
- 1. Tian M, Macdonald RL. The intronic GABRG2 mutation, IVS6+2T->G, associated with childhood absence epilepsy altered subunit mRNA intron splicing, activated nonsense-mediated decay, and produced a stable truncated gamma2 subunit. J Neurosci, 2012, 32(6):5937-5952.
- 2. Prasad AN, Prasad C. Genetic influences on the risk for epilepsy. In Pediatric Epilepsy. Edited by Pellock JM, Bourgeois BFD, Dodson WE.et al.:New York:Demos. 2008:117-134.
- 3. Sigurdardottir L, Poduri A. Inherited epilepsies. In Neurogenetics:Scienti? c and Clinical Advances. Edited by Lynch DR. New York:Taylor and Francis. 2006:427-467.
- 4. Steinlein OK. Genes and mutations in human idiopathic epilepsy. Brain Dev, 2004, 26(3):213-218.
- 5. Newmark ME, Penry JK. Genetics of Epilepsy:A Review New York:Raven Press; 1980.
- 6. Frankel WN. Genetics of complex neurological disease:challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet, 2009, 5:361-367.
- 7. Lerche H, Jurkat-Rott K, Lehmann-Hom F. Ion channels and epilepsy. Am J Med Genet. 2001, 106(2):146-159.
- 8. Gribkoff VK.The therapeutic potential of neuronal KCNQ channel modulators. Expert Opin Ther Targets. 2003, 7(6):737-748.
- 9. Singh NA,Westenskow P,Charlier C,et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions:expansion of the functional and mutation spectrum..Brain. 2003, 126(12):2726-37.
- 10. Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet, 1998, 19(6):366-370.
- 11. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+. Nat Genet, 2000, 24(7):343-345.
- 12. Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha Ⅱ subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA, 2001, 98(11):6384-6389.
- 13. Baulac S, Huberfeld G, Gourenkel-An I. First genetic evidence of GABA(A) receptor dysfunction in epilepsy:a mutation in the gamma2-subunit gene. Nat Genet, 2001, 28(7):46-48.
- 14. Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra-or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet, 2004, 13(7):1315-1319.
- 15. Meisler MH, O'Brien JE, Sharkey LM. Sodium channel gene family:epilepsy mutations, gene interactions and modifier effects. J Physiol, 2010, 588(3):1841-1848.
- 16. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy:mutations and mechanisms. Epilepsia, 2010, 51(2):1650-1658.
- 17. Veeramah KR, O'Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet, 2012, 90(4):502-510.
- 18. Larsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015, 84(2):480-489.
- 19. Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia, 2014, 55(5):994-1000.
- 20. de Kovel CG, Meisler MH, Brilstra EH, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res, 2014, 108(3):1511-1518.
- 21. Estacion M, O'Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis, 2014, 69(8):117-123.
- 22. Gardella E. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol, 2016, 79(3):428-436.
- 23. De Fusco M. The nicotinic receptors b2 submit is mutant in noctural frontal lobe epilepsy. Nat Genet, 2000, 26(2):275-276.
- 24. Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol, 2006, 59(3):983-987.
- 25. Tanaka M, DeLorey TM, Delgado-Escueta A. GABRB3, Epilepsy and Neurodevelopment. In:Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies, 4th Edn. National Center for Biotechnology Information, Bethesda, 2012:895-1201.
- 26. Urak L, FeuchtM, Fathi N, et al. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet, 2006, 15(2):2533-2541.
- 27. Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet, 2008, 82(10):1249-1261.
- 28. Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra-or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet, 2004, 13(1):1315-1319.
- 29. Lenzen KP, Heils A, Lorenz S, et al. Association analysis of the Arg220His variation of the human gene encoding the GABA delta subunit with idiopathic generalized epilepsy. Epilepsy Res, 2005, 65(2):53-57.
- 30. Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001, 28(8):49-52.
- 31. Chen Y, Lu J, Pan H, et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol, 2003, 54(10):239-243.
- 32. Reid CA, Berkovic SF, Petrou S. Mechanisms of human inherited epilepsies. Prog Neurobiol, 2009, 87(2):41-57.
- 33. Haug K,Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet, 2003, 33(2):527-532.
- 34. Berkovic SF, Howell RA, Hay DA. Epilepsies in twins:genetics of the major epilepsy syndromes. Ann Neurol, 1998, 43(4):435-445.
- 35. Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet, 2008, 40 (6):782-788.
- 36. Hamdan FF, Piton A, Gauthier J, et al. De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol, 2009, 65(7):748-753.
- 37. Schubert J, Siekierska A, Langlois M, et al. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet, 2014, 46(3):1327-1332.
- 38. Rohena L, Neidich J, Truitt Cho M, et al. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis, 2013, 10(1):e26314.
- 39. Alazami AM, Hijazi H, Kentab AY, et al. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J Med Genet, 2014, 51(3):224-228.
- 40. Euro EPINOMICS-RES Consortium. Epilepsy Phenome/Genome Project, and Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet, 2014, 95(2):360-370.
- 41. Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet, 2013, 45(5):825-830.
- 42. Thomas RH, Zhang LM, Carvill GL, et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology, 2015, 84(11):951-958.
- 43. Suls A, Jaehn JA, Kecskés A, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet, 2013, 93(10):967-975.
- 44. Lund C, Brodtkorb E, Selmer KK. CHD2 mutations in Lennox-Gastaut syndrome. Epilepsy Behav, 2014, 33(2):18-21.
- 45. Epileptic Consortium & Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature, 2013, 501(22):217-221.
- 46. Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 2012, 485(10):242-245.
- 47. Crino PB. mTOR signaling in epilepsy:insights from malformations of cortical development. Cold Spring Harb Perspect Med, 2015, 5(3):a022442.
- 48. Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type Ⅱ leading to intractable epilepsy. Nat Med, 2015, 21(8):395-400.
- 49. Dibbens LM, de Vries B, Donatello S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet, 2013, 45(3):546-551.
- 50. Ishida S, Picard F, Rudolf G, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet, 2013, 45(2):552-555.
- 51. Nascimento FA. Two definite cases of sudden unexpected death in epilepsy in a family with a DEPDC5 mutation. Neurol Genet, 2015, 1(4):e28.
- 52. Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type Ⅱ leading to intractable epilepsy. Nat Med, 2015, 21(5):395-400.
- 53. Kato M, Das S, Petras K, et al. Polyalanine expansion of ARX associated with cryptogenic West syndrome. Neurology, 2003, 61 (2):267-276.
- 54. Stromme P, Mangelsdorf ME, Shaw MA, et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet, 2002, 30 (4):441-445.
- 55. Giordano L, Sartori S, Russo S,et al. Familial Ohtahara syndrome due to a novel ARX gene mutation. Am J Med Genet, 2010, 121 (12):3133-3137.
- 56. Kato M, Koyama N, Ohta M, et al. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia, 2010, 51 (9):1679-1684.
- 57. Demos MK, Fullston T, Partington MW, et al. Clinical study of two brothers with a novel 33bp duplication in the ARX gene. Am J Med Genet, 2009, 149(4):1482-1486.
- 58. Eksioglu YZ, Pong AW, Takeoka M. A novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in famales. Epilepsia, 2011, 52(5):984-992.
- 59. Archer HL, Evans J, Edwards S, et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet, 2006, 43(2):729-734.
- 60. Bahi-Buisson N, Nectoux J, Rosas-Vargas H, et al. Key clinical features to identify girls with CDKL5 mutations. Brain, 2008, 131(4):2647-2661.
- 61. Bahi-Buisson N, Bienvenu T. CDKL5-related disorders:from clinical description to molecular genetics. Mol Syndromol, 2012, 2(3/5):147-152.
- 62. Bahi-Buisson N, Kaminska A, Boddaert N, et al. The three stages of epilepsy in patients with CDKL5mutations. Epilepsy, 2008, 49(6):1027-1037.
- 63. Dibbens LM, Tarpey PS, Hynes K, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet, 2008, 40 (6):776-781.
- 64. Depienne C, Trouillard O, Bouteiller D, et al. Mutations and deletions in PCDH19 account for various familial or isolated epilepsies in females. Hum Mutat, 2011, 32 (1):E1959-E1975.
- 65. Colin E. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. The American Journal of Human Genetics, 2016, 26(3):695-703.
- 66. Johansen, A. Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, lead to intellectual disability accompanied by epilepsy and autistic features. The American Journal of Human Genetics, 2016, 26(7):1016-1019.
- 67. Raviglione F. Clinical findings in a patient with FARS2 mutations and early-infantile-encephalopathy with epilepsy. American Journal of Medical Genetics, 2016, 19(Pt A):1-4.
- 68. Frasa MA, Koessmeier KT, Ahmadian MR. Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol, 2012, 13(3):67-73.
- 69. Corbet MA. A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet, 2010, 87(2):371-375.
- 70. Falace A. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet, 2010, 87(2):365-370.
- 71. Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet, 2013, 50(2):199-202.
- 72. Milh M. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat, 2013, 34(1):869-872.
- 73. Muona M. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 2015, 47(3):39-46.
- 74. Poulat AL. Homozygous TBC1D24 mutation in two siblings with familial infantile myoclonic epilepsy (FIME) and moderate intellectual disability. Epilepsy Res, 2015, 111(2):72-77.
- 75. Azaiez H. TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss. Hum Mutat, 2014, 35(2):819-823.
- 76. Bakhchan A. Recessive TBC1D24 mutations are frequent in Moroccan non-syndromic hearing loss pedigrees. PLoS ONE, 2015, 124(10):e0138072.
- 77. Stražišar BG, Neubauer D, Paro Panjan. Early-onset epileptic encephalopathy with hearing loss in two siblings with TBC1D24 recessive mutations. Eur J Paediatr Neurol, 2015, 19(3):251-256.
- 78. Zhang L, Hu L, Chai Y. A dominant mutation in the stereocilia-expressing gene TBC1D24 is a probable cause for non-syndromic hearing impairment. Hum Mutat, 2014, 35(8):814-818.
- 79. Doummar D. A novel homozygous TBC1D24 mutation causing multifocal myoclonus with cerebellar involvement. Mov Disord, 2015, 30(2):1431-1432.
- 80. Campeau PM. DOORS syndrome:phenotype, genotype and comparison with Coffn-Siris syndrome. Am J Hum Genet, 2014, 91(6):327-332.
- 81. Campeau PM.The genetic basis of DOORS syndrome:an exome-sequencing study. Lancet Neurol, 2014, 104(13):44-58.
- 82. Fischer B. Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nature Structural & Molecular Biology, 2016, 65(3):3297-3311.
- 83. de Kovel CG, Trucks H, Helbig I, et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 2010, 133(4):23-32.
- 84. Dibbens LM, Mullen S, Helbig I, et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy:precedent for disorders with complex inheritance. Hum Mol Gene, 2009, 18(1):3626-3631.
- 85. Heinzen EL, Radtke RA, Urban TJ, et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet, 2010, 86(2):707-718.
- 86. Lal D, Trucks H, Møller RS, et al. Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy. Epilepsia, 2013, 54(7):265-271.
- 87. Lionel AC, Vaags AK, Sato D, et al. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet, 2013, 22(1):2055-2066.
- 88. Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet, 2013, 45(2):825-830.
- 89. Thomas RH, Zhang LM, Carvill GL, et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology, 2015, 84(4):951-958.
- 90. Verhoeven WM. Absence epilepsy and the CHD2 gene:an adolescent male with moderate intellectual disability, short-lasting psychoses, and an interstitial deletion in 15q26.1-q26.2. Neuropsychiatr Dis Treat, 2016, 12(1):1135-1139.
- 91. Carvill GL, McMahon JM, Schneider A, et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonicatonic seizures. Am J Hum Genet, 2015, 96(7):808-815.
- 92. Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 2009, 323(1):1074-1077.
- 93. Jakovcevski M, Akbarian S. Epigeneticmechanisms in neurological disease. Nat Med, 2012, 18(2):1194-1204.
- 94. Qureshi IA, Mehler MF. Understanding neurological diseasemechanisms in the era of epigenetics. JAMA Neurol, 2013, 70(1):703-710.
- 95. Kobow K, Blumcke I. The emerging role of DNA methylation in epileptogenesis. Epilepsia, 2012, 53(4):11-20.
- 96. Lubin FD. Epileptogenesis:Can the science of epigenetics give us answers? Epilepsy Curr, 2012, 12(4):105-110.
- 97. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci, 2013, 6(7):1-11.
- 98. Detlev Boison, The biochemistry and epigenetics of epilepsy:focus on adenosine and glycine. Frontiers in Molecular Neuroscience, 2016, 26(7):1-7.
- 99. Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33 (Suppl):245-254.
- 100. Robertson KD. DNA methylation and human disease. Nat Rev Genet, 2005, 6(4):597-610.
- 101. Choo KB.Epigenetics in disease and cancer. Malays J Pathol, 2011, 33(2):61-70.
- 102. Martinowich K, Hattori D,Wu H. DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science, 2003, 302(1):890-893.
- 103. Guo JU, Ma DK, Mo H, et al. Neuronal activity modi? es the DNA methylation landscape in the adult brain. Nat Neurosci, 2011, 14(5):1345-1351.
- 104. Kobow K, Jeske I, Hildebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol, 2009, 68(2):356-364.
- 105. Kobow K, Kaspi A, Harikrishnan KN, et al., Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol, 2013, 126(8):741-756.
- 106. Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci, 2012, 46(4):420-426.
- 107. Williams-Karnesky RL, Sandau US, Lusardi TA, et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest, 2013, 123(7):3552-3563.
- 108. Miller-Delaney SF, Bryan K, Das S, et al., Differential DNA methylation profiles of coding and noncoding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138(4):616-631.
- 109. Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 2009, 323(7):1074-1077.
- 110. Feng J, Zhou Y, Campbell SL, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 2010, 13(1):423-430.
- 111. Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis:a new target of disease mechanisms. Neurotherapeutics, 2013, 10(7):722-733.
- 112. Masliah E, Dumaop W, Galasko D. Distinctive patterns of DNA methylation associated with Parkinson disease:identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics, 2013, 8(1):1030-1038.
- 113. Coppieters N, Dieriks BV, Lill C. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging, 2014, 35(7):1334-1344.
- 114. Tremolizzo L, Messina P, Conti E, et al. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener, 2014, 15(7):98-105.
- 115. Kobow K. The methylation hypothesis:do epigenetic chromatin modifications play a role in epileptogenesis?. Epilepsia, 2011, 52(8):15-19.
- 116. Amir RE, Van den Veyver IB, Wan M. Rett syndrome is caused by mutations in X-linkedMECP2, encodingmethyl-CpG-binding protein 2. Nat Genet, 1999, 23(7):185-188.
- 117. Maxwell SS, Pelka GJ, Tam PP. Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol, 2013, 10(1):1741-1757.
- 118. Gadalla KK,Bailey ME,Cobb SR.MeCP2 and Rett syndrome:reversibility and potential avenues for therapy. Biochem J, 2011, 439(1):1-14.
- 119. Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci, 2012, 46(3):420-426.
- 120. Ryley Parrish R, Albertson AJ, Buckingham SC, et al. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience, 2013, 248(1):602-619.
- 121. Miller-Delaney SF, Das S, Sano T, et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci, 2012, 32(7):1577-1588.
- 122. Henshall DC, Sinclair J, Simon RP. Relationship between seizure-induced transcription of the DNA damage-inducible gene GADD45, DNA fragmentation, and neuronal death in focally evoked limbic epilepsy. J Neurochem, 1999, 73(2):1573-1583.
- 123. Henshall DC, Kobow K. Epigenetics and epilepsy. Cold Spring Harb Perspect Med, 2015, 5(1):a022731.
- 124. Tao J, Wu H, Lin Q, et al. Deletion of astroglial dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci, 2011, 31(2):8306-8319.
- 125. Tan CL, Plotkin JL, Veno MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science, 2013, 342(1):1254-1258.
- 126. Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med, 2012, 18(2):1087-1094.
- 127. Roncon P, SoukupovaM, Binaschi A, et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy-comparison with human epileptic samples. Sci Rep, 2015, 5(2):141-143.
- 128. Kan AA, van Erp S, Derijck AA, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. CellMol Life Sci, 2012, 69(11):3127-3145.
- 129. Risbud RM, Porter BE. Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS ONE, 2013, 41(8):e53464.
- 130. Gorter JA, Iyer A, White I, et al. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis, 2014, 62(2):508-520.
- 131. Haenisch S, Zhao Y, Chhibber A, et al. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and nonfocal brain tissue of therapy-resistant epilepsy patients. Neurobiol Dis, 2015, 77(7):127-140.
- 132. Kretschmann A, Danis B, Andonovic L, et al. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci, 2015, 55(12):466-479.
- 133. Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol, 2002, 128(2):58-68.
- 134. Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci, 2010, 31(1):1100-1107.
- 135. Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a:a key regulator of astrocyte-mediated inflammatory response. PLoS ONE, 2012, 38(7):e44789.
- 136. Bot AM, Debski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS ONE, 2013, 39(8):e76051.
- 137. McKiernan RC, Jimenez-Mateos EM, Bray I, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS ONE, 2012, 38(7):e35921.
- 138. Rossato M, Curtale G, Tamassia N, et al. IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA, 2012, 109(2):3101-3110.
- 139. Song YJ, Tian XB, Zhang S, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res, 2011, 1387(7):134-140.
- 140. Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci, 2013, 51(4):950-958.
- 141. McKiernan RC, Jimenez-Mateos EM, Sano T, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol, 2012, 237(1):346-354.
- 142. Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA, 2009, 106(3):5282-5287.
-
Previous Article
癫痫与内分泌激素关系的研究进展 -
Next Article
核磁共振图像后处理技术在癫痫术前评估中的应用