1. |
Crino PB.mTOR signaling in epilepsy: insights from malformations of cortical development.Cold Spring Harb Perspect Med, 2015, 5(4): 422-442.
|
2. |
Tischfeld MA, Cederquist GY, Gupta ML Jr, et al. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations.Curr Opin Genet Dev, 2011, 21(3): 286-294.
|
3. |
Han JM, Sahin M.TSC1/TSC2 signaling in the CNS.FEBS Lett, 2011, 585(7): 973-980.
|
4. |
Crino PB.Evolving neurobiology of tuberous sclerosis complex.Acta Neuropathol, 2013, 125(3): 317-332.
|
5. |
Riviere JB, Mirzaa GM, O'Roak BJ, et al. Finding of Rare Disease Genes (FORGE) Canada Consortium.Nat Genet, 2012, 44(8): 934-940.
|
6. |
Jansen LA, Mirzaa GM, Ishak GE, et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations frommegalencephaly to focal cortical dysplasia.Brain, 2015, 138(Pt 6): 1613-1628.
|
7. |
Mirzaa GM, Riviere JB, Dobyns WB.Megalencephaly syndromes andactivating mutations in the PI3K-AKT pathway: MPPH and MCAP.Am JMed Genet C Semin Med Genet, 2013, 163(2): 122-130.
|
8. |
Roy A, Skibo J, Kalume F, et al. Mouse models of human PIK3CA-relatedbrain overgrowth have acutely treatable epilepsy.Elife, 2015, 4(3): piie12703.
|
9. |
Poduri A, Evrony GD, Cai X, et al. Somatic activationof AKT3 causes hemispheric developmental brain malformations.Neuron, 2012, 74(1): 41-48.
|
10. |
Baek ST, Copeland B, Yun EJ, et al. An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development.Nat Med, 2015, 21(12): 1445-1454.
|
11. |
Chang BS, Duzcan F, Kim S, et al. The role of RELN in lissencephaly and neuropsychiatric disease.Am J Med Genet B Neuropsychiatr Genet, 2007, 144(1): 58-63.
|
12. |
Moon UY, Park JY, Park R, et al. Impaired Reelin-Dab1 signaling contributes to neuronal mig-ration defcits of tuberous sclerosis complex.Cell Rep, 2015, 12(6): 965-978.
|
13. |
Eggers CM, Kline ER, Zhong D, et al. STE20-relatedkinase adaptor protein alpha (STRAD alpha) regulates cell polarityand invasion through PAK1 signaling in LKB1-null cells.J Biol Chem, 2012, 287(22): 18758-18768.
|
14. |
Orlova KA, Parker WE, Heuer GG, et al. STRADalpha defciency results in aberrant mTORC1 signaling during corticogenesis in humans and mice.J ClinInvest, 2010, 120(5): 1591-1602.
|
15. |
Parker WE, Orlova KA, Parker WH, et al. Rapamycin prevents seizures after depletion of ST-RADA in a rare neurodevelopmental disorder.Sci Transl Med, 2013, 182(5): 182ra53.
|
16. |
Pilarski R, Stephens JA, Noss R, et al. Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome clinical features.J Med Genet, 2011, 48(8): 505-512.
|
17. |
Ljungberg MC, Sunnen CN, Lugo JN, et al. Rapamycin suppresses seizures and neuronal hyp-ertrophy in a mousemodel of cortical dysplasia.Dis Model Mech, 2009, 2(7-8): 389-398.
|
18. |
Mester JL, Tilot AK, Rybicki LA, et al. Analysis of prevalence and degree of macrocephaly in patients with germline PTENmutations and of brain weight in Pten knock-in murine model.Eu-r JHum Genet, 2011, 19(7): 763-768.
|
19. |
Kwon CH, Zhu X, Zhang J, et al. mTOR is required for hypertrophyof Pten-defcient neuronal soma in vivo.Proc Natl Acad Sci USA, 2003, 100(22): 12923-12928.
|
20. |
Sunnen CN, Brewster AL, Lugo JN, et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice.Epilepsia, 2011, 52(11): 2065-2075.
|
21. |
Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the RagGTPases that signal amino acid sufciency to mTORC1.Science, 2013, 340(6136): 1100-1106.
|
22. |
Alfaiz AA, Micale L, Mandriani B, et al. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease.Hum Mutat, 2014, 35(4): 447-451.
|
23. |
Ricos MG, Hodgson BL, Pippucci T, et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy.Ann Neurol, 2015, 79(1): 120-131.
|
24. |
Wei Y, Lilly MA.The TORC1 inhibitors Nprl2 and Nprl3 mediate anadaptive response to amino-acid starvation in Drosophila.Cell DeathDier, 2014, 21(9): 1460-1468.
|
25. |
Choi YJ, Di NA, Kramvis I, et al. Tuberous sclerosis complex proteins control axon formation.GenesDev, 2008, 22(18): 2485-2495.
|
26. |
Baulac S, Ishida S, Marsan E, et al. Familialfocal epilepsy with focal cortical dysplasia due to DEPDC5 mutations.Ann Neurol, 2015, 77(4): 675-683.
|
27. |
Chantranupong L, Wolfson RL, Orozco JM, et al. The Sestrins interactwith GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.Cell Rep, 2014, 9(1): 1-8.
|
28. |
Leventer RJ, Scerri T, Marsh AP, et al. Hemispheric cortical dysplasia secondary to a mosaic somaticmutation in MTOR.Neurology, 2015, 84(20): 2029-2032.
|
29. |
Poduri A.DEPDC5 does it all: shared genetics for diverse epilepsy syndromes.Ann Neurol, 2014, 75(5): 631-633.
|
30. |
Picard F, Makrythanasis P, Navarro V, et al. DEPDC5 mutations in families presenting as auto-somal dominant nocturnal frontal lobe epilepsy.Neurology, 2014, 82(23): 2101-2106.
|
31. |
Scheer IE, Heron SE, Regan BM, et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations.Ann Neurol, 2014, 75(5): 782-787.
|
32. |
Scerri T, Riseley JR, Gillies G, et al. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5.Ann Clin Transl Neurol, 2015, 2(5): 575-580.
|
33. |
Nakashima M, Saitsu H, Takei N, et al. Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb.Ann Neurol, 2015, 78(3): 375-386.
|
34. |
Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type Ⅱ leading to intractable epilepsy.Nat Med, 2015, 21(4): 395-400.
|
35. |
Reiner O, Carrozzo R, Shen Y, et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats.Nature, 1993, 364(6439): 717-721.
|
36. |
Bahi-Buisson N, Poirier K, Fourniol F, et al. The wide spectrum of tubulinopathies: what are the key features for the diagnosis.Brain, 2014, 137(Pt 6): 1676-1700.
|
37. |
Tian G, Jaglin XH, Keays DA, et al. Disease associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway.Hum Mol Genet, 2010, 19(18): 3599-3613.
|
38. |
Cederquist GY, Luchniak A, Tischfeld MA, et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axondysinnervation.Hum Mol Genet, 2012, 21(26): 5484-5499.
|
39. |
Tischfeld MA1, Baris HN, Wu C, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance.Cell, 2010, 140(1): 74-87.
|
40. |
Hamilton EM, Wolf NI, van der Knaap MS.Reply: TUBB4A novel mutation reinforces the genotype-phenotype correlation of hypomyelination with atrophy of the basal ganglia and cerebellum.Brain, 2015, 138(Pt 2): e328.
|
41. |
Romaniello R, Arrigoni F, Bassi MT, et al. Mutations in alpha-and beta-tubulin encoding genes: implications in brain malformations.Brain Dev, 2015, 37(3): 273-280.
|
42. |
Tischfeld MA, Engle EC.Distinct alpha-and beta-tubulin isotypes are required for the positioning, dierentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis.Biosci Rep, 2010, 30(5): 319-330.
|
43. |
Esmaeeli NS, Madou MR, Sirajuddin M, et al. De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy.Ann Clin Transl Neurol, 2015, 2(6): 623-635.
|
44. |
Bardon-Cancho EJ, Munoz-Jimenez L, Vazquez-Lopez M, et al. Periventricular nodular heterotopia and dystonia due to an ARFGEF2 mutation.Pediatr Neurol, 2014, 51(3): 461-464.
|
45. |
Lange M, Kasper B, Bohring A, et al. 47 patients with FLNA associated periventricular nodular heterotopia.Orphanet J Rare Dis, 2015, 10: 134.
|
46. |
Carabalona A, Beguin S, Pallesi-Pocachard E, et al. A glial origin for periventricular nodular heterotopia caused by impaired expression of Filamin-A.Hum Mol Genet, 2012, 21(5): 1004-1017.
|
47. |
Greenwood JS, Wang Y, Estrada RC, et al. Seizures, enhanced excitation, and increased vesicle number in Lis1 mutant mice.Ann Neurol, 2009, 66(5): 644-653.
|
48. |
Hunt RF, Dinday MT, Hindle-Katel W, et al. LIS1 defciency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus.J Neurosci, 2012, 32(37): 12862-12875.
|
49. |
Majewski J, BulmanDE, O'Driscoll M, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megal encephaly syndromes.Nat Genet, 2012, 44(8): 934-940.
|
50. |
Santucci M, Meletti S, Berkovic SF, et al. Mutations in the mTOR pathway regulators NPRL2 and NPRL3 cause focal epilepsy.Ann Neurol, 2015, 79(1): 120-131.
|