1. |
Lee KK, Salamon N. [18F] Fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol, 2009, 30(10): 1811-1816.
|
2. |
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Eng J Med, 2000, 342(5): 314-319.
|
3. |
Lee BI, Heo K. Epilepsy: new genes, new technologies, new insights. Lancet Neurol, 2014, 13(1): 7-9.
|
4. |
Focke NK, Yogara jah M, Bonelli SB. Voxel-based diffusion tensor imaging in patient with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage, 2008, 40(2): 728-737.
|
5. |
Kim SH, Lim SC, Yang DW, et al. Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat, 2017, 13: 2607-2619.
|
6. |
Huang Q, Lv X, He Y, et al. Structural differences in interictal migraine attack after epilepsy: a diffusion tensor imaging analysis. Epilepsy Behav, 2017, 77: 8-12.
|
7. |
Hsin YL, Harnod T, Chang CS, et al. Increase in gray matter volume and white matter fractional anisotropy in the motor pathways of patients with secondarily generalized neocortical seizures. Epilepsy Res, 2017, 137: 61-68.
|
8. |
Muhlhofer W, Tan YL, Mueller SG, et al. MRI-negative temporal lobe epilepsy--What do we know? Epilepsia, 2017, 58(5): 727-742.
|
9. |
Kuzniecky R, Palmer C, Hugg J, et al. Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol, 2001, 58(12): 2048-2053.
|
10. |
Petroff OAC, Errante LD, Rothman DL, et al. Neuronal and gial metabolite content of the epileptogenic human hippocampus. Ann Neurol, 2002, 52(5): 635-642.
|
11. |
Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default node network in absence epilepsy: a resting-state fMRI study. Human Brain Mapping, 2011, 32(2): 438-449.
|
12. |
Carmichael DW, Hamandi K, Laufs H, et al. An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging, 2008, 26(7): 870-873.
|
13. |
Chassoux F, Rodrigo S, Semah F, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology, 2010, 75(24): 2168-2175.
|
14. |
郭坤, 李云波, 黄勇, 等. 18F-FDG PET标准脑葡萄糖代谢数据库的建立. 临床神经外科杂志, 2017, 12(4): 263-266.
|
15. |
Vivash L, Gregoire MC, Lau EW, et al. 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med, 2013, 54(8): 1270-1277.
|
16. |
Yankam Njiwa J, Bouvard S, Catenoix H, et al. Periventricular [(11)C]flumazenil binding for predicting postoperative outcome in individual patients with temporal lobe epilepsy and hippocampal sclerosis. Neuroimage Clin, 2013, 3: 242-328.
|
17. |
Boscolo Galazzo I, Mattoli MV, Pizzini FB, et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling. Neuroimage Clin, 2016, 11: 648-657.
|
18. |
Ding YS, Chen BB, Glielmi C, et al. A pilot study in epilepsy patients using simultaneous PET/MR. Am J Nucl Med Mol Imaging, 2014, 4(5): 459-470.
|
19. |
Garibotto V, Heinzer S, Vulliemoz, et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med, 2013, 38(1): e13-8.
|
20. |
Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure, 2015, 31: 1-4.
|
21. |
Rodríguez-Cruces R, Concha L. White matter in temporal lobe epilepsy: clinico-pathological correlates of water diffusion abnormalities. Quant Imaging Med Surg, 2015, 5(2): 264-278.
|