1. |
Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat, 2016, 12: 2605-2616.
|
2. |
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science, 2010, 330(6004): 612-616.
|
3. |
包翌, 肖争. DNA 甲基化在癫痫中的研究进展. 癫痫杂志, 2018, 4(3): 238-241.
|
4. |
Lerche H, Vezzani A, Beck H, <italic>et al</italic>. New developments in epileptogenesis and therapeutic perspectives. Nervenarzt, 2011, 82(8): 978-985.
|
5. |
Aronica E, Fluiter K, Iyer A, <italic>et al</italic>. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci, 2010, 31(6): 1100-1107.
|
6. |
Omran A, Peng J, Zhang C, <italic>et al</italic>. Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia, 2012, 53(7): 1215-1224.
|
7. |
Dogini DB, Avansini SH, Vieira AS, <italic>et al</italic>. MicroRNA regulation and dysregulation in epilepsy. Front Cell Neurosci, 2013, 7: 172.
|
8. |
Vo N, Klein ME, Varlamova O, <italic>et al</italic>. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 2005, 102(45): 16426-16431.
|
9. |
Jimenez-Mateos EM, Engel T, Merino-Serrais P, <italic>et al</italic>. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med, 2012, 18(7): 1087-1094.
|
10. |
Liu DZ, Tian Y, Ander BP, <italic>et al</italic>. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab, 2010, 30(1): 92-101.
|
11. |
Sano T, Reynolds JP, Jimenez-Mateos EM, <italic>et al</italic>. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis, 2012, 3: e287.
|
12. |
Risbud RM, Porter BE. Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One, 2013, 8(1): e53464.
|
13. |
Jang Y, Moon J, Lee ST, <italic>et al</italic>. Dysregulated long non-coding RNAs in the temporal lobe epilepsy mouse model. Seizure, 2018, 58: 110-119.
|
14. |
Mazzuferi M, Palma E, Martinello K, <italic>et al</italic>. Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci U S A, 2010, 107(7): 3180-3185.
|
15. |
Nightingale KP, Wellinger RE, Sogo JM, <italic>et al</italic>. Histone acetylation facilitates RNA polymerase Ⅱ transcription of the Drosophila hsp26 gene in chromatin. EMBO J, 1998, 17(10): 2865-2876.
|
16. |
Huang Y, Zhao F, Wang L, <italic>et al</italic>. Increased expression of histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patients and rat models. Synapse, 2012, 66(2): 151-159.
|
17. |
Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis, 2000, 21(3): 461-467.
|
18. |
Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci, 2009, 66(4): 596-612.
|
19. |
Meilinger D, Fellinger K, Bultmann S, <italic>et al</italic>. Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep, 2009, 10(11): 1259-1264.
|
20. |
Kobow K, Kaspi A, Harikrishnan KN, <italic>et al</italic>. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol, 2013, 126(5): 741-756.
|
21. |
Unal Y, Kara M, Genc F, <italic>et al</italic>. The methylation status of NKCC1 and KCC2 in the patients with refractory temporal lobe epilepsy. Ideggyogy Sz, 2019, 72(5-6): 181-186.
|
22. |
Xiao W, Cao Y, Long H, <italic>et al</italic>. Genome-wide DNA methylation patterns analysis of noncoding RNAs in temporal lobe epilepsy patients. Mol Neurobiol, 2018, 55(1): 793-803.
|
23. |
Ryley Parrish R, Albertson AJ, <italic>et al</italic>. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience, 2013, 248: 602-619.
|
24. |
Machnes ZM, Huang TC, Chang PK, <italic>et al</italic>. DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS One, 2013, 8(10): e76299.
|
25. |
Wang L, Fu X, Peng X, <italic>et al</italic>. DNA methylation profiling reveals correlation of differential methylation patterns with gene expression in human epilepsy. J Mol Neurosci, 2016, 59(1): 68-77.
|
26. |
Miller-Delaney SF, Bryan K, Das S, <italic>et al</italic>. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138(Pt 3): 616-631.
|
27. |
Miller-Delaney SF, Das S, Sano T, <italic>et al</italic>. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci, 2012, 32(5): 1577-1588.
|
28. |
Martinez-Levy GA, Rocha L, Lubin FD. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy. Neuroscience, 2016, 314: 12-21.
|
29. |
Sulewska A, Niklinska W, Kozlowski M, <italic>et al</italic>. DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol, 2007, 45(3): 149-158.
|
30. |
Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol, 2004, 55: 41-68.
|
31. |
Kobow K, Jeske I, Hildebrandt M, a l. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol, 2009, 68(4): 3563-64.
|
32. |
Long HY, Feng L, Kang J,. Blood DNA methylation pattern is altered in mesial temporal lobe epilepsy. Sci Rep, 2017, 7: 43810.
|
33. |
Tan NN, Tang HL, Lin GW. Epigenetic downregulation of scn3a expression by valproate: a possible role in its anticonvulsant activity. Mol Neurobiol, 2017, 54(4): 2831-2842.
|
34. |
Li HJ, Wan RP, Tang LJ, <italic>et al</italic>. Alteration of Scn3a expression is mediated via CpG methylation and MBD2 in mouse hippocampus during postnatal development and seizure condition. Biochim Biophys Acta, 2015, 1849(1): 1-9.
|
35. |
Aizawa S, Yamamuro Y. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport, 2015, 26(15): 915-920.
|
36. |
Kohno S, Kohno T, Nakano Y, <italic>et al</italic>. Mechanism and significance of specific proteolytic cleavage of Reelin. Biochem Biophys Res Commun, 2009, 380(1): 93-97.
|
37. |
Muller MC, Osswald M, Tinnes S, <italic>et al</italic>. Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol, 2009, 216(2): 390-397.
|
38. |
Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest, 2005, 115(8): 2010-2017.
|
39. |
Goldin AL. Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci, 1999, 868: 38-50.
|
40. |
Haris PI, Ramesh B, Sansom MS, <italic>et al</italic>. Studies of the pore-forming domain of a voltage-gated potassium channel protein. Protein Eng, 1994, 7(2): 255-262.
|
41. |
Schade SD, Brown GB. Identifying the promoter region of the human brain sodium channel subtype Ⅱ gene (SCN2A). Brain Res Mol Brain Res, 2000, 81(1-2): 187-190.
|
42. |
Drews VL, Lieberman AP, Meisler MH. Multiple transcripts of sodium channel SCN8A (Na(V)1.6) with alternative 5'- and 3'-untranslated regions and initial characterization of the SCN8A promoter. Genomics, 2005, 85(2): 245-257.
|
43. |
Long YS, Zhao QH, Su T, <italic>et al</italic>. Identification of the promoter region and the 5'-untranslated exons of the human voltage-gated sodium channel Nav1.1 gene (SCN1A) and enhancement of gene expression by the 5'-untranslated exon. J Neurosci Res, 2008, 86(15): 3375-3381.
|
44. |
Martin MS, Tang B, Ta N, <italic>et al</italic>. Characterization of 5' untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics, 2007, 90(2): 225-235.
|
45. |
Krapivinsky G, Krapivinsky L, Manasian Y, <italic>et al</italic>. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron, 2003, 40(4): 775-784.
|
46. |
Zhu Q, Wang L, Xiao Z, <italic>et al</italic>. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats. Brain Res, 2013, 1493: 99-109.
|
47. |
Chen X, Peng X, Wang L, <italic>et al</italic>. Association of RASgrf1 methylation with epileptic seizures. Oncotarget, 2017, 8(28): 46286-46297.
|
48. |
Bao Y, Chen X, Wang L, <italic>et al</italic>. RASgrf1, a potential methylatic mediator of anti-epileptogenesis? Neurochem Res, 2018, 43(10): 2000-2007.
|
49. |
Lv Y, Zheng X, Shi M, <italic>et al</italic>. Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population. BMC Neurol, 2019, 19(1): 114.
|
50. |
Belhedi N, Perroud N, Karege F, <italic>et al</italic>. Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res, 2014, 108(1): 144-148.
|