1. |
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals[J]. Mol Cell, 2010, 38(3):323-332.
|
2. |
Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processingpathway independent of Dicer requires Argonaute2 catalytic activity[J]. Science, 2010, 328(5986):1694-1698.
|
3. |
Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass drosha processing[J]. Nature, 2007, 448(7149):83-86.
|
4. |
Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1):92-105.
|
5. |
Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs[J]. Science, 2011, 331(6017):550-553.
|
6. |
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus[J]. PLoS One, 2011, 6(8):e22839.
|
7. |
Herrera BM, Lockstone HE, Taylor JM, et al. Global microRNAexpression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes[J]. Diabetologia, 2010, 53(6):1099-1109.
|
8. |
Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Imp-aired miR-146a expression links subclinical inflammation andinsulin resistance in type 2 diabetes[J]. Mol Cell Biochem, 2011,.
|
9. |
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes:a clinical study[J]. Acta Diabetol, 2011, 48(1):61-69.
|
10. |
Suppl 2:67-73.
|
11. |
McArthur K, Feng B, Wu Y, et al. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy[J]. Diabetes, 2011, 60(4):1314-1323.
|
12. |
Feng B, Chen S, McArthur K, et al. MiR-146a-mediated extrace-llular matrix protein production in chronic diabetes complications[J]. Diabetes, 2011, 60(11):2975-2984.
|
13. |
Schalkwijk CG, Stehouwer CD. Vascular complications in diab-etes mellitus:the role of endothelial dysfunction[J]. Clin Sci (Lond), 2005, 109(2):143-159.
|
14. |
Chen S, Apostolova MD, Cherian MG, et al. Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells[J]. Lab Invest, 2000,.
|
15. |
Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas[J]. Gene Expr, 2009, 9(4):193-199.
|
16. |
Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differ-ential expression analysis reveals miR-7 as major islet microRNA[J]. Biochem Biophys Res Commun, 2008, 366(4):922-926.
|
17. |
El Ouaamari A, Baroukh N, Martens GA, et al. MiR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J]. Diabetes, 2008, 57(10):2708-2717.
|
18. |
Avnit-Sagi T, Vana T, Walker MD. Transcriptional mechanisms controlling miR-375 gene expression in the pancreas[J]. Exp Diabetes Res, 2012, 2012:891216.
|
19. |
Zhao X, Mohan R, Özcan S, et al. MicroRNA-30d inducesinsulin transcription factor MafA and insulin production by targetingmitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells[J]. J Biol Chem, 2012, 287(37):31155-31164.
|
20. |
Ramachandran D, Roy U, Garg S, et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets[J]. FEBS J, 2011, 278(7):1167-1174.
|
21. |
Ryu HS, Park SY, Ma D, et al. The induction of microRNA targ-eting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes[J]. PLoS One, 2011, 6(3):e17343.
|
22. |
Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol, 2011, 13(4):434-446.
|
23. |
Zhou B, Li C, Qi W, et al. Downregulation of miR-181a upreg-ulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity[J]. Diabetologia, 2012, 55(7):2032-2043.
|
24. |
Li Y, Xu S, Giles A, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver[J]. FASEB J, 2011, 25(5):1664-1679.
|
25. |
Poy MN, Spranger M, Stoffel M. MicroRNAs and the regulationof glucose and lipid metabolism[J]. Diabetes Obes Metab, 2007,.
|
26. |
Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism[J]. Cardiovasc Res, 2010, 86(3):410-420.
|
27. |
Huang B, Qin W, Zhao B, et al. MicroRNA expression profiling in diabetic GK rat model[J]. Acta Biochim Biophys Sin (Shanghai), 2009, 41(6):472-477.
|
28. |
Keren A, Tamir Y, Bengal E. The p38 MAPK signaling pathway:a major regulator of skeletal muscle development[J]. Mol Cell Endocrinol, 2006, 252(1-2):224-230.
|
29. |
Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers[J]. Genes Chromosomes Cancer, 2008, 47(11):939-946.
|
30. |
Yki-Järvinen H. Glucose toxicity[J]. Endocr Rev, 1992, 13(3):.
|
31. |
Sun LL, Jiang BG, Li WT, et al. MicroRNA-15a positively regul-ates insulin synthesis by inhibiting uncoupling protein-2 expression[J]. Diabetes Res Clin Pract, 2011, 91(1):94-100.
|
32. |
Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM[J]. Diabetes, 1997, 46(1):3-10.
|
33. |
Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expre-ssion profile of human subcutaneous adipose and during adipocyte differentiation[J]. PLoS One, 2010, 5(2):e9022.
|
34. |
Ling HY, Wen GB, Feng SD, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J]. Clin Exp Pharmacol Physiol, 2011, 38(4):239-246.
|
35. |
Farmer SR. Transcriptional control of adipocyte formation[J]. Cell Metab, 2006, 4(4):263-273.
|
36. |
Kim YJ, Hwang SH, Cho HH, et al. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues[J]. J Cell Physiol, 2012, 227(1):183-193.
|
37. |
Karbiener M, Neuhold C, Opriessnig P, et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2[J]. RNA Biol, 2011, 8(5):850-860.
|
38. |
Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011, 474(7353):649-653.
|
39. |
Ling HY, Hu B, Hu XB, et al. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue[J]. Exp Clin Endocrinol Diabetes, 2012, 120(9):553-559.
|
40. |
Shen E, Diao X, Wang X, et al. MicroRNAs involved in themitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy[J]. Am J Pathol, 2011, 179(2):639-650.
|
41. |
Feng B, Chen S, George B, et al. MiR133a regulates cardiomyocyte hypertrophy in diabetes[J]. Diabetes Metab Res Rev, 2010, 26(1):40-49.
|
42. |
Shan ZX, Lin QX, Deng CY, et al. MiR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes[J]. FEBS Lett, 2010, 584(16):3592-3600.
|
43. |
Xie S, Xie N, Li Y, et al. Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat[J]. Mol Cell Biochem, 2012, 361(1-2):305-314.
|
44. |
Feng B, Chakrabarti S. MiR-320 regulates glucose-induced gene expression in diabetes[J]. ISRN Endocrinol, 2012, 2012:549875.
|
45. |
Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13):11837-11848.
|
46. |
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J]. Proc Natl Acad Sci U S A, 2007, 104(9):3432-3437.
|
47. |
Krupa A, Jenkins R, Luo DD, et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(3):438-447.
|
48. |
Qian Y, Feldman E, Pennathur S, et al. From fibrosis to sclerosis:mechanisms of glomerulosclerosis in diabetic nephropathy[J]. Diabetes, 2008, 57(6):1439-1445.
|
49. |
Fu Y, Zhang Y, Wang Z, et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy[J]. J Nephrol, 2010, 32(6):581-589.
|
50. |
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10):997-1006.
|
51. |
(8):1311-1321.
|
52. |
(1-2):197-205.
|
53. |
-431.
|