west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "人工骨" 33 results
  • 经皮撬拨复位加自固化磷酸钙人工骨植入治疗跟骨骨折

    目的 总结经皮撬拨复位结合自固化磷酸钙人工骨植入治疗跟骨骨折的治疗方法和效果。 方 法 2004 年6 月- 2008 年6 月,收治跟骨骨折13 例。男11 例,女2 例;年龄18 ~ 61 岁,平均38 岁。高处坠落伤9 例,砸伤4 例。均为单侧闭合骨折。按Sanders 分型:Ⅱ型5 例,Ⅲ型7 例,Ⅳ型1 例。X线片示Bouml;hler 角为— 10 ~ 15°,平均5°。受伤至手术时间4 h ~ 2 d。行经皮克氏针撬拨复位骨折,于骨折缺损处注入4 ~ 6 mL 注射型自固化磷酸钙人工骨修复。 结果 术后无软组织坏死及感染发生。13 例均获随访,随访时间1 ~ 2 年。X 线片示骨折均于术后3 ~ 5 个月愈合;Bouml;hler 角为15 ~ 40°,平均27.8°。关节面复位高度无丢失,骨折愈合后逐渐恢复负重行走功能。注射型材料未引起血磷、血钙增高及过敏、毒性反应。11 例于术后6 个月自固化磷酸钙人工骨完全降解,2 例于8 个月降解完全;降解同时骨组织生成。按美国足踝外科学会(AOFAS)评分:优7 例,良4 例,一般2 例,优良率84.6%。 结论 经皮撬拨复位加自固化磷酸钙人工骨植入治疗跟骨骨折具有操作简便、创伤小、并发症少的优点。

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • PRELIMINARY CLINICAL APPLICATION OF CANCELLOUS GRANULE-TYPE CALCIUM PHOSPHATE CEMENT

    Objective To investigate the cl inical efficacy of the cancellous granule-type calcium phosphate cement in repair bone defect. Methods Between July 2008 and July 2009, 35 patients (42 l imbs) with fractures, nonunion, and benign bone tumor were treated with cancellous granule-type calcium phosphate cement. There were 32 males and 3 females,with an age range from 9 to 73 years (median, 41 years), including 24 l imb fractures (19 cases), 4 osteotomy for deformity of ulna and radius (2 cases), 2 femur intertrochanteric bony cysts (2 cases), 3 enchondroma (3 cases), 5 bone defect at donor il ium (5 cases), 3 nonunion (3 cases), and 1 lumbar spinal stenosis (1 case). The size of bone defect was 1-5 cm. Bone defect was repaired with cancellous granule-type calcium phosphate cement (1-5 g). Results All cases were followed up 8-23 months (13.7 months on average). Thirty-nine incisions (32 cases) healed by first intention and the suture was removed after 10-14 days. Incision dehiscence occurred in 2 cases, and wounds healed after second debridement and removal of artificial bone. Exudation of incision occurred in 1 case, and wound healed after symptomatic treatment. No local red swell ing, higher temperature, maculopapule, and ulceration of skin occurred at implantation site. X-ray films showed that bone graft fusion was achieved and bone defect was radically repaired at 6 months after operation and artificial bone was absorbed completely at 12 months. Conclusion Cancellous granule-type calcium phosphate cement can be used as a new graft bone material, which is suitable for defect fill ing after traumatic fracture, benign bone tumors, and il iac bone donor.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • CLINICAL APPLICATION OF BIOACTIVE CPC LOADING rhBMP-2 IN REPAIRING BONE DEFECTS

    Objective To investigate the cl inical appl ication of self-setting CPC loading rhBMP-2 for repair of bone defects and to evaluate the cl inical effect and safety. Methods From June 2006 to September 2007, 112 bone defects patients were treated by CPC loading rhBMP-2 (rhBMP-2/CPC group) or CPC (control group). The range of bone defect was from1 cm × 1 cm × 1 cm to 4 cm × 3 cm × 3 cm. In the control group, 63 patients included 31 males and 32 females, aging from 17 to 70 years with an average of 47.4 years. The bone defects were located as follows: calcaneus in 19 patients, tibial plateau in 20 patients, proximal humerus in 8 patients, distal radius in 9 patients and thoracolumbar vertebrae in 7 patients. In the rhBMP-2/CPC group, 49 patients included 31 males and 18 females, aging from 16 to 68 years with an average of 45.6 years. The bone defects were located as follows: calcaneus in 11 patients, tibial plateau in 16 patients, proximal humerus in 7 patients, distal radius in 2 patients, distal tibia in 2 patients and thoracolumbar vertebrae in 11 patients. All defects were repaired with rhBMP-2/CPC (2-5 g) and CPC (2-50 g) in the rhBMP-2/CPC group and the control group, respectively. Results A total of 108 patients got primary heal ing after operation. Incisions oozing l ight yellow fluids were found in 4 patients (control group in 1, rhBMP-2/CPC group in 3), and then healed through dressing changes and taking glucocorticoid. There were no allergic or toxic reaction, no rush or high fever, no fluctuation of hepatic and renal function, blood routine, CRP and urine routine. All patients were followed up for 12 to 24 months (mean 13.2 months). The X-ray examination showed that the implanted material was firmly bonded to the bone at the interface and the anatomic contour of the bone at the sites of defects was successfully restored, and no ablation occurred. All patients got bone union after 3 months of operation. The movement and function of flexion and extension of affected l imbs recovered to the normal level. Conclusion Repairing bone defects with rhBMP-2/CPC is safe and effective. Using rhBMP-2/CPC is a promising therapy to deal with bone defects.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • CLINICAL RESULTS AND THE MECHANISM OF BONE HEALING FOR THE REPAIR OF BONE DEFECTS DUETO TUMOR RESECTION WITH NOVEL INTERPOROUS TCP

    To investigate the cl inical results and the mechanism of bone heal ing for the repair of bone defects following tumor resection with novel interporous TCP bone graft, and to test the hypothesis of “structural transplantation”. Methods From January 2003 to December 2005, 61 cases of various bone defects following the curettage of the benign bone tumors were treated with interporous TCP, with 33 males and 28 females, including bone fibrous dysplasiain 8 cases, bone cyst in 23 cases, eosinophil ic granuloma in 12 cases, enchondroma in 13 cases, non-ossifying fibroma in 2 cases, and osteoblastoma in 3 cases. Tumor sizes varied from 1.5 cm × 1.0 cm to 7.0 cm × 5.0 cm. The plain X-ray, single photon emission computed tomography (SPECT) and histology examination were obtained at various time points after operation. The in vivo biodegradation rate of the implanted TCP was evaluated based on a semi-quantitive radiographic analyzing method. Histopathology examination was performed in 1 revision case. Results All the patients were followed up for 5 to 24 months after operation. They all had good wound heal ing and bone regeneration. There was neither significant reverse reaction to the transplanted material nor locally inflammatory reaction in all of the cases. The bone defects were repaired gradually from 1 to 6 months after operation (bone heal ing at average 2.6 months after surgery) with a bone heal ing rate up to 96.7%. There was only 1 recurrence case (eosinophil ic granuloma in ischium) 3 months after operation. Given revision operation, this case gained bone heal ing. Radiographically, the interface between the implanted bone and host bone became fuzzy 1 month after implantation, indicating the beginning of new bone formation. Three months later, the absorption of the interporous TCP was noticed from peripheral to the center of the implanted bone evidenced by the vague or fuzzy realm. New bone formation could be seen both in peri pheral and central areas. Six months later, implanted bone and host bone merged together and the bone defect was totally repaired, with 78.9% degradation rate of the implanted TCP. Twelve months later, the majority of the implanted bone was absorbed and bone remodel ing was establ ished. In the cases that were followed up for 24 months, the function of affectedextremity was excellent with good bone remodel ing without recurrence. In 2 cases, SPECT showed that nucl ide uptake could be observed in implanted site and the metabol ic activity was high both in the central as well as the peripheral areas of the graft 1 month after implantation, which was an evidence of osteogenesis. Pathologically, the interporous TCP closely contacted the host bone inside the humerus 1 month after grafting. The interface between the implanted bone and host bone became fuzzy, and vascularized tissue began growing inside the implanted graft as a “l ining” structure. Conclusion The interporous TCP proves to be effective for cl inical reparation of bone defects following tumor resection. The inside three-dimensional porous structure simulates the natural bionic bone structure which is suitable for recruitment related cells in-growth into the scaffold, colonizing and prol iferation companied with the process of vascularize, finally with the new bone formation. The novel interporous TCP may boast both bone conductive and bone inductive activities, as an appeal ing “structural transplantation” bone graft.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • AUTOLOGOUS BONE MARROW INTEGRATING ARTIFICIAL BONE AND ILIUM PERIOSTEUMTRANSPLANTATION FOR TREATMENT OF BONE NONUNION

    To evaluate the initial cl inical effect of the autologous bone marrow integrating artificial bone and il ium periosteum transplantation in treatment of problematic nonunion. Methods From January 2004 to July 2006, 12 patients (13 l imbs)with problematic nonunion were treated with autologous bone marrow integrating artificial bone and il iumperiosteum. There were 8 males and 4 females, aged 17-58 years old. The position of nonunion were the tibia in 7 l imbs, the femur in 3 l imbs, the humerus in 2 l imbs. The operated number was 1-4, mean 2.5. The time from injury to therapy was 13 months to 9 years, mean 47.6 months. The bone defect distance was 6-30 mm (mean 15 mm) through 1 ∶ 1 X-rays before operation. Eleven l imbs were treated by internal fixation (10 l imbs by the bone nail and 1 l imb by the l imited contact-dynamic compression plate), 2 l imbs were treated by the external fixation. The X-ray films were taken at 1 day, 1, 3, 6, 9, 12 months after operation to observe fracture union. Results All patients were followed up for 12-26 months (mean 17.5 months) and achieved union within 4-7 months (mean 6 months). No deformity of rotation, angulation and crispation occurred in 13 l imbs, but functional impairment occurred in 6 l imbs after union of fracture. Conclusion Autologous bone marrow integrating artificial bone and il ium periosteum transplantation for treatment of problematic nonunion has the satisfactory result.

    Release date:2016-09-01 09:14 Export PDF Favorites Scan
  • HYDROXYAPATITE PARTICULATE ARTIFICIAL BONE FOR REPAIRING SUNKEN DEFORMATION OF FRONTAL BONE FOLLOWING REMOVAL OF DERMOID CYST

    Objective To investigate aesthetic outcomes and postoperative complications of hydroxyapatite particulate artificial bone for repairing sunken deformation of frontal bone following removal of dermoid cyst. Methods From February 2000 to May 2005, hydroxyapatite particulate artificial bone was used to repair the sunken deformation of frontal bone in 13 cases (9 males and 4 females), and the age of the patients was from 17 to 41 years. The dermoid cysts were all found during infant period, and the length and width of the cysts ranged from 6 cm×4 cm to 10 cm×8 cm. Anincision along the hairedge or tumor margin was made to excise the dermoid cyst in the forehead. After complete removal of dermoid cyst, the sunken frontal bone was examined and repaired with hydroxyapatite particulate artificial bone. The clinical checkup and Xray examination were utilized to determine aesthetic outcomes and postoperative complications at 1 week, 1 month and 6 months after operation. Results The primary wound healing was obtained in allpatients postoperatively, and no complications such as hematoma, infection, recurrence of dermoidcysts or displacement of hydroxyapatite particulate artificial bone were observed. With a followup from 1 to 20 months, all sunken deformations were completely repaired with satisfactorily aesthetic outcomes. Through clinical checkup and X-ray examination, the implants were found to integrate with the frontal bones without any gaps and displacement. Conclusion It is a simple and viable method torepair sunken deformation of frontal bone with hydroxyapatite particulate artificial bone.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • COMPARATIVE STUDY OF LUMBAR SPONDYLOLISTHESIS TREATED BY THREE DIFFERENT MATERIALS

    Objective To evluate the clinical outcome of autograftsof ilium and interbody fusion cage or bone morphogenetic protein(BMP)/artificial bone material/ cage in treating lumbar spondylolisthesis. Methods From January 1997 to January 2004,114 patients with lumbar spondylolisthesis were treated with posterior lumbar interbody fusion and pedicle screw fixation. There were 45 males and 69 females with an average age of 43 years ranging from 32 to 61 years. Of 114patients, 85 cases were classified as degree Ⅰ, 24 cases as degree Ⅱ and 5 cases as degree Ⅲ. The patients were divided into three groups accordingto the material used for interbody fusion: autografts of ilium (group A, n=42), interbody fusion cages(group B, n=36), and BMP/artificial bone material/ cage (group C, n=36).The clinical and radiographic results of the patients were compared among three groups. Results All patients were followed from 13 to 30 months with an average of 15 months. There were no statistically significant differences in surgical time, blood loss, and disc space height of preoperation(P>0.05) among three groups. No severe complication occurred in the three groups(P>0.05). The excellent and good rates in groups A,B and C were 81.0%, 80.6%, and 83.3% respectively, showing no statisticallysignificant difference(P>0.05).The fusion rate of group C(97.0%) was significantly higher than those of group A(81.0%) and group B(83.3%) (P<0.05) after 1 year of operation.And the average loss of disc space height in groups B and C was significantly lower than that in group A(P<0.05). Conclusion Higher fusion rate and lower loss of disc space height can beobtained in treating lumbar spondylolisthesis with BMP/artificial bone materiel.It is an effective method in the treatment of spondylolisthesis.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • 自固化磷酸钙人工骨在跟骨骨折治疗中的应用

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON THE POROUS CALCIUM PHOSPHATE CEMENT COMBINED WITH RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 FOR BONE DEFECTS REPAIR

    Objective To study in vitro sustained release behaviour of the recombinant human bone morphogenetic protein 2(rhBMP-2) from the sample which porous calcium phosphate cement (PCPC) was combined with rhBMP-2, and to evaluate the effect of PCPC/rhBMP-2 composite on repairing bone defect in the animalstudy.Methods rhBMP-2 was absorbed into PCPC by vacuum-adsorption and freeze-dried at -40℃, the PCPC/rhBMP-2 enwrapped with chitosan as the experimental group, the pure PCPC/rhBMP-2 as the control group, then the sustained release ofrhBMP-2 from PCPC was determined in simulated body fluid (SBF) by UV-VIS spectrophotometer. At same time, the PCPC/rhBMP-2 composites with chitosan were implanted into the (4.2 mm×5.0 mm femora defects of rabbits, which were considered as the experimental group, whereas in the control group only PCPC was implanted. The effect of repairingbone defect was evaluated in the 4th and 8th week postoperatively by radiograph and histomorphology.Results The PCPC have a high absorption efficiency to rhBMP-2, and the release of rhBMP-2 was sustained release system. The release of rhBMP-2 from PCPC in the experimental group (99% after 350 hours) was slowerthan that in the control group (100% after 150 hours). In the experimental group, the radiological and histomorphological evaluations showed that theinterfaces between the materials and host bones became blurred both at 4th and 8th week. The implanted materials were partially absorbed, and the implanted areas exhibited the formation of new bone. In the control group, a little amount of new bones was observed. Conclusion The PCPC shows great clinical potential as a carrier for rhBMP-2. The PCPC/rhBMP-2 composite possesses much potentialities of osteoinductivity and the ability of repairing bone defect, so it can be used as a novel bone substitute clinically. 

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • IN VIVO ECTOPIC OSTEOGENESIS OF NACRE/POLYLACTIC ACID ARTIFICIAL BONECOMBINED WITH ALLOGENIC OSTEOBLASTS

    Objective To study the mechanism of ectopic osteogenesis of nacre/Polylactic acid (N/P) artificial bone combined with allogenic osteoblasts, and to explore the possibility as a scaffold material of bone tissue engineering. Methods The allogenic- osteoblasts seeded onto N/P artificial bone were co-cultured in vivo 1 week.The N/P artificial bone with allogenic osteoblasts were implanted subcutaneously into the left back sites of the New Zealand white rabbits in the experimental group and the simple N/P artificial bone into the right ones in the control group. The complexes were harvested and examined by gross observation, histologic analysis and immunohistochemical investigation 2, 4 and 8 weeks after implantation respectively.Results In experimental group, the osteoid formed after 4 weeks, and the mature bone tissue withbone medullary cavities formed after 8 weeks; but in control group there was nonew bone formation instead of abundant fibrous tissue after 4 weeks, and more fibrous tissue after 8 weeks.Conclusion N/P artificial bone can be used as an optical scaffold material of bone tissue engineering.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content