west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "壳聚糖" 66 results
  • DEVELOPMENT RESEARCH OF BIOLOGICAL DRESSING

    ObjectiveTo review the research progress of modern biological dressings. MethodsThe related literature at home and abroad was reviewed, analyzed, and summarized in the progress of biological dressing situation and various types of biological dressing research. ResultsCompared with the traditional dressing, the biological dressing can greatly promote wound healing. Biological dressings are mainly divided into the natural materials, artificial synthetic materials, and drug loaded dressings. The natural material dressings are mainly the alginate dressing, this kind of dressing can promote wound healing, which has been confirmed by a large number of studies. The artificial synthetic materials include film dressings, liquid, water colloids, gels, and foam, each has its own advantages and disadvantages, which can be chosen according to need. The drug dressing can play the role of drug loading, and further promote the wound healing; using microcapsule technology to construct the dressing and choosing Chinese medicine as drugs is the research direction of load. ConclusionThe experiment and clinical application of biological dressing are many types, clinical application prospect is wide, but each has its own advantages and disadvantages, further study is needed to improve its efficacy.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • Experimental Study of Repairing of Esophagus Defect with Lung Tissue Flap and an Inner Chitosan Tube Stent

    ObjectiveTo investigate the feasibility of lung tissue flap repairing esophagus defect with an inner chitosan tube stentin in order to complete repairing and reconsruction of the esophagus defect.MethodsFifteen Japanese white rabbits were randomly divided into two groups, experiment group(n=10): esophagus defect was repaired with lung tissue flap having inner chitosan tube stent; control group(n=5): esophagus defect was repaired with lung tissue flap without inner chitosan tube stent; and then the gross and histological apearance in both groups were observed at 2, 4,8 weeks after operation, barium sulphate X-ray screen were observed at 10 weeks after operation.ResultsSix rabbits survived for over two weeks in experiment group, lung tissue flap healed with esophageal defect, squamous metaplasia were found on the surface of lung tissue flap in experiment group. At 10 weeks after operation, barium sulphate examination found that barium was fluent through the esophageal and no narrow or reversed peristalsis, the peristalsis was good in experiment group.Four rabbits survived for two weeks and the lung tissue flap healed with esophageal defect, fibrous tissue hyperplasy on the surface of the lung tissue flap in control group. At 10 weeks after operation, barium sulphate examination found that barium was fluent through the esophageal and slight narrow or reversed peristalsis, the peristalsis was not good in control group, otherwise.ConclusionIt is a feasible method to repair the esophageal defect with lung tissue flap with the inner chitosan stent.

    Release date:2016-08-30 06:04 Export PDF Favorites Scan
  • PREPARATION OF SILK FIBROIN-CHITOSAN SCAFFOLDS AND THEIR PROPERTIES

    Objective To prepare the silk fibroin (SF)-chitosan (CS) scaffolds by adjusting the mass ratio between CS and SF, and test and compare the properties of the scaffolds at different mass ratios. Methods According to the mass ratios of 6 ∶ 4 (group A), 6 ∶ 8 (group B), and 6 ∶ 16 (group C) between SF and CS, CS-SF scaffolds were prepared by freeze-drying method, respectively. The material properties, porosity, the dissolubility in hot water, the modulus elasticity, and the water absorption expansion rate were measured; the aperture size and shape of scaffolds were observed by scanning electron microscope (SEM). Density gradient centrifugation method was used to isolate the bone marrow mesenchymal stell cells (BMSCs) of 4-week-old male Sprague Dawley rats. The BMSCs at passage 3 were seeded onto 3 scaffolds respectively, and then the proliferation of cells on the scaffolds was detected by MTS method. Results The results of fourier transform infrared spectroscopy proved that with the increased content of CS, the absorption peak of random coil/α helix structure (1 654 cm-1 and 1 540 cm-1) constantly decreased, but the absorption peak of corresponding to β-fold structure (1 628 cm-1 and 1 516 cm- 1) increased. The porosity was 87.36% ± 2.15% in group A, 77.82% ± 1.37% in group B, and 72.22% ± 1.37% in group C; the porosity of group A was significantly higher than that of groups B and C (P lt; 0.05), and the porosity of group B was significantly higher than that of group C (P lt; 0.05). The dissolubility in hot water was 0 in groups A and B, and was 3.12% ± 1.26% in group C. The scaffolds had good viscoelasticity in 3 groups; the modulus elasticity of 3 groups were consistent with the range of normal articular cartilage (4-15 kPa); no significant difference was found among 3 groups (F=5.523, P=0.054). The water absorption expansion rate was 1 528.52% ± 194.63% in group A, 1 078.22% ± 100.52% in group B, and 1 320.05% ± 179.97% in group C; the rate of group A was significantly higher than that of group B (P=0.05), but there was no significant difference between groups A and C and between groups B and C (P gt; 0.05). SEM results showed the aperture size of group A was between 50-250 μm, with good connectivity of pores; however, groups B and C had structure disturbance, with non-uniform aperture size and poor connectivity of pores. The growth curve results showed the number of living cells of group A was significantly higher than that of groups B and C at 1, 3, 5, and 7 days (P lt; 0.05); and there were significant differences between groups B and C at 3, 5, and 7 days (P lt; 0.05). Conclusion The CS-SF scaffold at a mass ratio of 6 ∶ 4 is applicable for cartilage tissue engineering.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • IN VlVO EXPERIMENT OF POROUS BIOACTIVE BONE CEMENT MODIFIED BY BIOGLASS AND CHITOSAN

    Objective To investigate the biomechanical properties of porous bioactive bone cement (PBC) in vivo and to observe the degradation of PBC and new bone formation histologically. Methods According to the weight percentage (W/ W, %) of polymethylmethacrylate (PMMA) to bioglass to chitosan, 3 kinds of PBS powders were obtained: PBC I (50 ︰ 40 ︰ 10), PBC II (40 ︰ 50 ︰ 10), and PBC III (30 ︰ 60 ︰ 10). The bilateral femoral condylar defect model (4 mm in diameter and 10 mm in depth) was established in 32 10-month-old New Zealand white rabbits (male or female, weighing 4.0-4.5 kg), which were randomly divided into 4 groups (n=8); pure PMMA (group A), PBC I (group B), PBC II (group C), and PBC III (group D) were implanted in the bilateral femoral condylar defects, respectively. Gross observation were done after operation. X-ray films were taken after 1 week. At 3 and 6 months after operation, the bone cement specimens were harvested for mechanical test and histological examination. Four kinds of unplanted cement were also used for biomechanical test as control. Results All rabbits survived to the end of experiment. The X-ray films revealed the location of bone cement was at the right position after 1 week. Before implantation, at 3 months and 6 months after operation, the compressive strength and elastic modulus of groups C and D decreased significantly when compared with those of group A (P lt; 0.05), but no significant difference was found between groups C and D (P gt; 0.05); the compressive strength at each time point and elastic modulus at 3 and 6 months of group B decreased significantly when compared with those of group A (P lt; 0.05). Before implantation and at 3 months after operation, the compressive strength and elastic modulus of groups C and D decreased significantly when compared with those of group B (P lt; 0.05); at 6 months after operation, the compressive strength of group C and the elastic modulus of group D were significantly lower than those of group B (P lt; 0.05). The compressive strength and elastic modulus at 3 and 6 months after operation significantly decreased when compared with those before implantation in groups B, C, and D (P lt; 0.05), but no significant difference was found in group A (P lt; 0.05). At 3 months after operation, histological observation showed that a fibrous tissue layer formed between the PMMA cement and bone in group A, while chitosan particles degraded with different levels in groups B, C, and D, especially in group D. At 6 months after operation, chitosan particles partly degraded in groups B, C, and D with an amount of new bone ingrowth, and groups C and D was better than group B in bone growth; group A had no obvious change. Quantitative analysis results showed that the bone tissue percentage was gradually increased in the group A to group D, and the bone tissue percentage at 6 months after operation was significantly higher than that at 3 months within the group. Conclusion According to the weight percentage (W/W, %) of PMMA to bioglass to chitosan, PBCs made by the composition of 40 ︰ 50 ︰ 10 and 30 ︰ 60 ︰ 10 have better biocompatibility and biomechanical properties than PMMA cement, it may reduce the fracture risk of the adjacent vertebrae after vertebroplasty.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON HEMOSTASIS OF THERMOSENSITIVE CHITOSAN HEMOSTATIC FILM

    Objective To investigate the hemostasis of thermosensitive chitosan hemostatic film. Methods Fifty adult Sprague Dawley rats, male or female and weighing 190-210 g, were made the models of liver injury. The models were randomly divided into 5 groups (n=10) depending on different hemostatic materials. The incision of the liver was covered with the hemostatic materials of 2.0 cm × 1.0 cm × 0.5 cm in size: thermosensitive chitosan hemostatic film (group A), chitosan hemostatic film (group B), cellulose hemostatic cotton (group C), gelatin sponge (group D), and no treatment (group E), respectively. The bleeding time and bleeding amount were recorded. After 4 weeks, the incisions of the liver were observed with HE staining. Results Gross observation showed better hemostatic effect and faster hemostatic time in groups A, B, and C; group D had weaker hemostatic effect and slower hemostatic time; group E had no hemostatic effect. The bleeding time and bleeding amount of groups A, B, C, and D were significantly lower than those of group E (P lt; 0.05). The bleeding time and bleeding amount of groups A, B, and C were significantly lower than those of group D (P lt; 0.05), but no significant difference was found among groups A, B, and C (P gt; 0.05). The liver cells of group A had milder edema and ballooning degeneration than other 4 groups through histological observation. Conclusion The thermosensitive chitosan hemostatic film has good hemostasis effect on the liver incision of rats.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EFFECT OF CARBOXYMETHYLATED CHITOSAN ON PROLIFERATION AND SYNTHESIS OF NEUROTROPHIC FACTORS IN Schwann CELLS IN VITRO

    Objective To investigate the effect of carboxymethylated chitosan (CMCS) on the proliferation, cell cycle, and secretion of neurotrophic factors in cultured Schwann cells (SCs). Methods SCs were obtained from sciatic nerves of 20 Sprague Dawley rats (3-5 days old; male or female; weighing, 25-30 g) and cultured in vitro, SCs were identified and purified by immunofluorescence against S-100. The cell counting kit 8 (CCK-8) assay was used to determine the proliferation of SCs. The SCs were divided into 4 groups: 50 μg/mL CMCS (group B), 100 μg/mL CMCS (group C), 200 μg/mL CMCS (group D), and the same amount of PBS (group A) were added. The flow cytometry was used to analyze the cell cycle of SCs; the real-time quantitative PCR and Western blot analysis were used to detect the levels of never growth factor (NGF) and ciliary neurotrophic factor (CNTF) in cultured SCs induced by CMCS. Results The purity of cultured SCs was more than 90% by immunofluorescence against S-100; the CCK-8 results indicated that CMCS in concentrations of 10-1 000 μg/mL could promote the proliferation of SCs, especially in concentrations of 200 and 500 μg/mL (P lt; 0.01), but no significant difference was found between 200 and 500 μg/mL (P gt; 0.05). CMCS at a concentration of 200 μg/mL for 24 hours induced the highest proliferation, showing significant difference when compared with that at 0 hour (P lt; 0.01). The percentage of cells in phase S and the proliferation index were significantly higher in groups B, C, and D than in group A (P lt; 0.05), in groups C and D than in group B (P lt; 0.05); and there was no significant difference between group C and group D (P gt; 0.05). Real-time quantitative PCR and Western blot results showed that the levels of NGF and CNTF in groups B, C, and D were significantly higher than those in group A (P lt; 0.05), especially in group D. Conclusion CMCS can stimulate the proliferation, and induce the synthesis of neurotrophic factors in cultured SCs.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • VANCOMYCIN CATIONIC LIPOSOME COMBINED WITH NANO-HYDROXYAPATITE/CHITOSAN/KONJACGLUCOMANNAN SCAFFOLD FOR TREATMENT OF INFECTED BONE DEFECTS IN RABBITS

    【Abstract】 Objective To investigate the anti-infection and bone repair effects of cationic l i posome-encapsulatedvancomycin combined with the nano-hydroxyapatite/chitosan/konjac glucomannan (n-HA/CS/KGM) composite scaffold invivo. Methods Fifty-one 6-month-old New Zealand white rabbits, weighing 1.5-3.0 kg, were selected to prepare chronicinfectious tibia bone defect model by using Staphylococcus aureus. After 4 weeks, 48 survival rabbits were randomly divided into 4 groups (n=12). After debridement, defect was treated with nothing in group A, with n-HA/CS/KGM composite scaffold in group B, with vancomycin and n-HA/CS/KGM composite scaffold in group C, and with cationic l i posome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold in group D. After 8 weeks of treatment, general observation, X-ray, HE staining, the bacterial culture, and the measurement of the longest diameter of bone defect were done. Results At 4 weeks after modeling, 48 rabbits were diagnosed as having osteomyelitis, including periosteal new bone formation, destruction of bone, and soft tissue swell ing. The Norden score was 3.83 ± 0.52. At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the gross bone pathologieal scores of group D were significantly better than those of groups A and B (P lt; 0.05). Bone defects were repaired completely in group D, the results of the longest diameter of bone defects in group D was significantly better than those in the other 3 groups (P lt; 0.05). New bone formation was observed in groups C and D, but periosteal reactionand marrow low-density shadow were observed in groups A and B; Norden score in group D was significantly better than those in groups A, B, and C (P lt; 0.05). HE staining showed that there were a large number of trabecular bone formation and fibrosis, with no obvious signs of infection in groups C and D, but neutrophil accumulation was observed in groups A and B; Smeltzer scores in groups C and D were significantly better than those in groups A and B (P lt; 0.05). Bacteriological results showed higher negative rate in groups C and D than in groups A and B (P lt; 0.05). Conclusion Cationic l iposome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold can be a good treatment for infectious bone defects in rabbits, providing a new strategy for the therapy of bone defects in chronic infection.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • INJECTABLE BORATE GLASS/CHITOSAN COMPOSITE AS BRUG CARRIER FOR TREATMENT OF CHRONIC OSTEOMYELITIS

    Objective To evaluate the characterization, biocompatibil ity in vitro and in vivo, and antimicrobial activity of an injectable vancomycin-loaded borate glass/chitosan composite (VBC) so as to lay the foundation for its further cl inical application. Methods The sol id phase of VBC was constituted by borate glass and vancomycin, liquid phase was a mixture of chitosan, citric acid, and glucose with the proportion of 1 ∶ 10 ∶ 20. Solid phase and liquid phase was mixed withthe ratio of 2 ∶ 1. Vancomycin-loaded calcium sulfate (VCS) was produced by the same method using calcium sulfate instead of borate glass and sal ine instead of chitosan, as control. High performance liquid chromatography was applied to detect the release rate of antibiotics from VBC and VCS, and minimum inhibitory concentration (MIC) was tested by using an antibiotic tube dilution method. The structure of the VBC and VCS specimens before and 2, 4, 8, 16, and 40 days after immersion in D-Hank’s was examined by scanning electron microscopy, and the phase composition of VBC was analysed by X-ray diffraction after soaked for 40 days. Thirty-three healthy adult New Zealand white rabbits (weighing, 2.25-3.10 kg; male or female) were used to establ ish the osteomyel itis models according to Norden method. After 4 weeks, the models of osteomyel itis were successfully established in 28 rabbits, and they were randomly divided into 4 groups (groups A, B, C, and D). In group A (n=8), simple debridement was performed; in groups B and C (n=8), defect was treated by injecting VCS or VBC after debridement; and in group D (n=4), no treatment was given. The effectiveness of treatment was assessed using radiological and histological techniques after 2 months. Results The releases of vancomycin from VBC lasted for 30 days; the release rate of vancomycin reached 75% at the first 8 days, then could reached more than 90%. The releases of vancomycin from VCS lasted only for 16 days. The MIC of VBC and VCS were both 2 μg/mL. The VCS had a smooth glass crystal surface before immersion, however, it was almost degradated after 4 days. The fairly smooth surface of the VBC pellet became more porous and rougher with time, X-ray diffraction analysis of VBC soaked for 40 days indicated that the borate glass had gradually converted to hydroxyapatite. After 2 months, the best result of treatment was observed in group C, osteomyelitis symptoms disappeared. The X-ray scores of groups A, B, C, and D were 3.50 ± 0.63, 2.29 ± 0.39, 2.00 ± 0.41, and 4.25 ± 0.64, respectively; Smeltzer scores were 6.00 ± 0.89, 4.00 ± 0.82, 3.57 ± 0.98, and 7.25 ± 0.50, respectively. The scores were significantly higher in group D than in groups A, B, and C (P lt; 0.05), and in group A than in groups B and C (P lt; 0.05). The scores were higher in group B than in group C, but no significant difference was found (P gt; 0.05). Conclusion The VBC is effective in treating chronic osteomyelitis of rabbit by providing a sustained release of vancomycin, in addition to stimulating bone regeneration, so it may be a promising biomaterial for treating chronic osteomyelitis.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • PREPARATION OF BASIC FIBROBLAST GROWTH FACTOR CHITOSAN MICROSPHERE AND ITS PROPERTIES

    Objective To study the release properties of basic fibroblast growth factor (bFGF) chitosan microspheres prepared by cross-linking-emulsion method using chitosan as a carrier material so as to lay a foundation for further study. Methods Using 0.6% sodium tripolyphosphate solution as a crosslinking agent and 1.5% solution of chitosan as a carrier material, bFGF chitosan microspheres were prepared by cross-linking-emulsion method. Laser particle size analyzer and Zeta electric potential analyzer were used to measure the particle diameter distribution, scanning electronic microscope to observe the morphology, and ELISA to determine the drug loading, the encapsulation rate, and the drug release properties. Results The particle size of bFGF chitosan microspheres ranged 20.312-24.152 μm. The microspheres were round with a smooth surface and uniform distribution, and it had no apparent porosity. The drug loading and encapsulation rate of microspheres were (7.57 ± 0.34) mg/g and 95.14% ± 1.58%, respectively. The bFGF chitosan microspheres could continuously release bFGF for 24 days; the bFGF level increased gradually with time and reached (820.45 ± 21.34) ng/mL at 24 days; and the microspheres had a burst effect, and the burst rate was 18.08%, and the accumulative release rate of the microspheres reached 82.05% during 24 days. Conclusion It is easy-to-operate to prepare the bFGF chitosan microspheres with the cross-linking-emulsion method. The bFGF chitosan microspheres have smooth surface, uniform distribution, and no apparent porosity.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF A NOVEL BIOMIMETIC OSTEOCHONDRAL SCAFFOLD: COLLAGEN-CHITOSAN/NANO-HYDROXYAPATITE-COLLAGEN-POLYLACTIC ACID

    Objective To prepare collagen-chitosan /nano-hydroxyapatite-collagen-polylactic acid (Col-CS/ nHAC-PLA) biomimetic scaffold and to examine its biocompatibility so as to lay the foundation for its application on the treatment of osteochondral defect. Methods PLA was dissolved in dioxane for getting final concentration of 8%, and the nHAC power was added at a weight ratio of nHAC to PLA, 1 ∶ 1. The solution was poured into a mold and frozen. CS and Col were dissolved in 2% acetum for getting the final concentrations of 2% and 1% respectively, then compounded at a weight ratio of CS to Col, 20 ∶ 1. The solution was poured into the frozen mold containing nHAC-PLA, and then biomimetic osteochondral scaffold of Col-CS/nHAC-PLA was prepared by freeze-drying. Acute systemic toxicity test, intracutaneous stimulation test, pyrogen test, hemolysis test, cytotoxicity test, and bone implant test were performed to evaluate its biocompatibility. Results Col-CS/nHAC-PLA had no acute systemic toxicity. Primary irritation index was 0, indicating that Col-CS/nHAC-PLA had very slight skin irritation. In pyrogen test, the increasing temperature of each rabbit was less than 0.6℃, and the increasing temperature sum of 3 rabbits was less than 1.3℃, which was consistent with the evaluation criteria. Hemolytic rate of Col-CS/nHAC-PLA was 1.38% (far less than 5%). The toxicity grade of Col-CS/nHAC-PLA was classified as grade I. Bone implant test showed that Col-CS/nHAC-PLA had good biocompatibility with the surrounding tissue. Conclusion Col-CS/ nHAC-PLA scaffold has good biocompatibility, which can be used as an alternative osteochondral scaffold.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content