Objective To investigate the feasibility and effect of human amniotic membrane in prevention of tendon adhension after tendon sheat defect repair. Methods The amniotic membrane in size of 1.5 cm × 1.0 cm was harvested from human placenta which was voluntary donated from maternal after cesarean. Forty healthy male Leghorn chicken (aged 3-6 months) were selected, weighing (1.86 ± 0.04) kg. The model of flexor digitorum profundus tendon and tendon sheath defects was established at the third toe. After repair of the flexor digitorum profundus tendon, the human amniotic membrane was used to repair the tendon sheath defect in the right foot (group A), but tendon sheath defect was not repaired in the left foot (group B) . At 1, 2, 4, and 6 weeks after operation, the gross and histological observations were done; the degree of tendon adhesions was graded according to Tang’s tendon adhesion general observation grading standards; and the biomechanical properties (tendon slip length and total flexion angle) were tested. Results All animals survived after operation and incisions healed. Gross and histological observations showed that the new tendon sheath formed with time passing after operation in groups A and B; new tendon sheath was more maturer and smoother in group A than in group B. The degree of tendon adhesions in group A was significantly less than that in group B (P lt; 0.05) at 1 and 6 weeks after operation. The biomechanical test results showed there was no significant difference in the tendon slip length between 2 groups at 1 and 2 weeks after operation (P gt; 0.05), but the tendon slip length of group A was significantly longer than that of group B at 4 and 6 weeks after operation (P lt; 0.05). The total flexion angle of group A was significantly smaller than that of group B at 1, 2, 4, and 6 weeks after operation (P lt; 0.05). Conclusion It is effective in the prevention of tendon adhesion to use the amniotic membrane for repairing the tendon sheath defect, which is beneficial to recovery of the tendon sliding function.
Objective The human amniotic epithel ial cells (hAECs) are a recently identified new type of stem cells.It has previously been shown that hAECs express hepatocyte-related gene and possess intracellular features and functional properties of hepatocytes. The hAECs may be a candidate seed cell for l iver regeneration. To research the survival and migrationin vivo of hAECs via adeno-associated virus-mediated the green fluorescent protein gene (AAV-GFP) transfection, and toexplore the expression of hepatocyte-l ike function. Methods Thirty nude mice (aging 6-8 weeks, half males and females, and weighing 20-22 g) were randomly divided into 3 groups (groups A, B, and C, n=10). The mice of groups A and C were made the 2/3 partial hepatectomy model, and the mice of group B underwent open abdominal operation without hepatectomy. The hAECs transfected by AAV-GFP were transplanted into the inferior end of the spleen in groups A and B with a cell density of 5 × 106/mL and a volume of 0.2 mL; the same volume of normal sal ine was injected in group C. At 4 hours, the nude mice were sacrificed and the samples of l iver, spleen, heart, lung, brain, and kidney were harvested and the general observation, histological observation, and immunofluorescence detection were performed for the hAECs survival, migration, and the functional properties of hepatocytes. Results No tumor tissue was found in l iver and spleen of 3 groups, and HE staining showed no tumor cells. There were a lot of roundl ike and deeply-stained cells with less cytoplasm and large nucleus in the spleen and the l iver of group A; no abnormal cells were found in l iver and spleen of groups B and C and in kidney, heart, bung, and brain of groups A, B, and C. The GFP+ cells were detected in the spleen and l iver of group A with expressing human albumin, but no GFP+ cells was found in l iver and spleen of groups B and C and in heart, kidney, lung, and brain of groups A, B, and C. Conclusion AAV-GFP infected hAECs transplanted into SCID nude mice with hepatectomy can keep the hepatocyte-l ike function. It will be beneficial to further identify their biological characteristics.
Objective Human acellular amniotic membrane (HAAM) contains collagens, glucoproteins, proteinpolysaccharide,integrin, and lamellar, which can supply rich nutrition to cell prol iferation and differentiation. To explore the possibil ity of HAAM with adi pose-derived stem cells (ADSCs) as a good engineered skin substitute for repairing skin defect. Methods Primary ADSCs were obtained from inguinal fat of 30 healthy 4-month-old SD rats, male or female, weighing 250-300 g, and cultured in vitro and purified. The 3rd passage ADSCs were used to detect CD44, CD49d and CD34 by immunocytochemistry staining. After physical and trypsin preparation, the HAAM was observed by HE staining and scanning electron microscope(SEM) respectively. ADSCs were seeded on epithel ial side of HAAM at the density of 2 × 105/cm2, cocultured, and observed by SEM at different time. MTT test was used to detect viabil ity of cells that seeded on HAAM, the group without HAAM was used as control. Thirty SD rats were made models of full-thickness skin wound and randomly divided into three groups (A, B, and C). Wound was repaired with HAAM/ADSCs composites in group A, with HAAM in group B, and with gauze as control in group C. The rats underwent postoperative assessment of wound heal ing rate and histological observation at the 1st, 2nd, and 4th weeks. Results HE staining showed that the 3rd passage ADSCs was spindle-shaped with an ovoid nucleus which located in the middle of cell; the immunocytochemistry staining showed positive result for CD44 and CD49d and negative result for CD34. There were no residues of cells in the HAAM by HE staining. SEM showed that there were different structures at the two sides of HAAM;one side had compact reticular structure and the other side had fibrous structure. After 3 days of co-culture, ADSCs showed good growth on HAAM; the cells were closely packed onto the HAAM, attached firmly and prol iferated to confluence on the stromal surface of HAAM. MTT test showed that the cells on the HAAM grew well and had b prol iferation vital ity. There was no significant difference between ADSCs cultured in the HAAM and control group (P gt; 0.05). One, 2, 4 weeks after graft, there were significant differences in wound heal ing rate between group A and groups B, C (P lt; 0.05), between group B and group C (P lt; 0.05). HE staining showed that wound healed faster in group A than in groups B, C. Cytokeratin 19 (CK19) immunohistochemical statining showed that there were more CK19 positive cells in group A than in groups B, C. Conclusion The graft of HAAM with ADSCs plays an effective role in promoting the repair of full-thickness skin wound
Objective To investigate a new composite matrix (BMSCs seeded on the denuded human amniotic membrane, BMSCs-DHAM) bridging the both stumps of spinal cord injury in rats to promote axon regeneration and improve motor function of hind l imbs. Methods The human amniotic membrane (HAM) was voluntarily donated by the healthy pregnant women after a caesarean section. The cells on the HAM were completely removed with a tryptic and mechanical approach to prepare DHAM. The BMSCs were separated and cultured from 4-week-old female rats (n=4), then the forth passage of BMSCs were labeled by PKH26 and seeded on DHAM (BMSCs-DHAM). The growing state of BMSCs was observed under themicroscopy. Moreover, 40 female rats (8-week-old, weighting 200-220 g) were made spinal cord injury models by transecting at T9 level, and were randomly divided into 4 groups (each group, n=10). The both stumps were respectively wrapped by BMSCs- DHAM or simple DHAM in groups A and C, and the same dose of BMSCs or physiological sal ine were also respectively injected the central lesion in groups B and D. At 12 weeks after surgery, the functional recovery of the hindl imbs was evaluated by the BBB locomotor rating score, and other indexes were tested including cortical motion evoked potential (MEP), anterograde biopinylated dextan amine (BDA) tracing, and immunofluorescence of neurofilament protein 200 (NF-200). Results HE staining proved that the DHAM was devoid of cellular components by this way, and BMSCs grew well on the substrate under the microscopy. At 12 weeks after operation, the BBB score (12.50 ± 1.26) in group A was significantly higher than those of other groups (P lt; 0.05), and the recovery in latency (3.52 ± 2.45) ms and ampl itude (480.68 ± 18.41) μV of MEP was also obviously improved in group A (P lt; 0.05) when compared with other groups. In addition, anterograde BDA tracing revealed that the rate of the positive BDA axons 54.12% ± 3.30% under the lesion level in group A was higher than those of other groups (P lt; 0.05), and lots of the regeneration axons (positive NF-200) were found to grow into the spinal cord under the composite matrix in group A. Conclusion The BMSCs-DHAM composite matrix can improve hindl imb motor function to some extent after spinal cord injury. It will be widely appl ied as the matrix material in the future.
To investigate the immunoreaction, histological reaction and turnover by comparing the xenotransplantation of fresh human amniotic membrane (HAM) with that of preserved HAM, and to analyze the cl inical appl ication value of different kinds of HAM preparations. Methods Subcutaneous implant models were establ ished in 150 BALB/C mice, which were randomized into 5 groups of 30 mice each, based on different implants: fresh amniotic membrane (FAM), double fresh amniotic membrane (DFAM), glycerin preserved amniotic membrane (GPAM), chorion (positive control) or merely operation (negative control). The tissue samples from grafted area were observed with SABC and HE staining, and the inflammatory cells were calculated with l ight microscopy. 1, 2, 4, 8 and 12 weeks after surgery. Results The mice in all of groups were normal in eating and moving, and the wound surface healed well. In all of AM groups, the expression of MHC Ⅱ and the calculation of inflammatory cells were much less than those in chorion groups, showing significant differences (P lt; 0.01). At 1, 8 and 12 weeks after surgery, there were no significant differences in the expression of MHC Ⅱ and the calculation of inflammatory cells in all of AM groups, compared with other groups (P gt; 0.05). From 2 weeks to 4 weeks after surgery, there were no significant differences in the expression of MHC Ⅱ and the calculation of inflammatory cells between FAM and DFAM groups (P gt; 0.05), but they were both more than those in GPAM groups, showing significant differences (P lt; 0.05). At the 4th week after surgery, in all of AM groups, the expression of MHC Ⅱ and the calculation of inflammatory cells were less than those at the 2nd week, showing significant difference (P lt; 0.01).The amniotic epithel ium was still al ive in fresh AM groups until 4 weeks after transplantation. Early after surgery, fibroblasts infiltrated AM from the substantia basilaris layer while made fibrous capsule around the epithel ium. After 12 weeks, the amnion absorbed. Conclusion As a kind of heterologous biomaterial, whether fresh or preserved, HAM can be seemedof ideal immunocompatibil ity and histocompatibil ity. Fresh HAM with al ive epithel ium may be more successful in area ofrepair and reconstruction.
Objective To review the latest development of amniotic membrane andits application. Methods Related literatures on the development of amniotic membrane and its application were extensively reviewed and summarized. Results There were amniotic epithelial cells and many growth factors in the outer layer of amniotic membrane and there were many kinds of collagen in the basement. The special structure promoted the growth of many kinds of cells. It was widely used in ophthalmology. Conclusion As it is easily available, compatible, cheap in price, low in antigenicity, and able to promote the growth of many kinds of cells, with few ethical problems involved, amniotic membrane will be more and more widely applied.
Objective To explore an effective method to culture and purify porcine keratinocytes, to observe the morphological characteristics of porcine keratinocytes growing on acellular amnion and to offer the experimental basis for that the amnion is used for tissue engineering. Methods The primary porcine keratinocytes were cultivated with DKSFM(Defined keratinocyteSFM) containing 10% fetal bovine serum (FBS). The second passage porcine keratinocytes were cultivated with the medium of DKSFM containing different concentrations of FBS. Because of the speciality that keratinocytes stick to flask fast, we purified the keratinocytes by 0.02% EDTA and 005% trypsin step by step. The second passage keratinocytes were seeded on amnion, the keratinocytes/amnion composites were observed by dye directly, histopathology and immunohistochemical staining. Results The proliferation of the primry porcine keratinocytes cultured with the medium ofDKSFM containing 10% FBS was fast and the morphological characteristics were good. The cultivated porcine keratinocytes expanded to 60%70% of the total area of the bottle of the flask after 5 days. The proliferation of the second passage porcine keratinocytes cultivated with the medium that DKSFM containing 5% FBS was faster than the second porcine keratinocytes cultured with the medium of DKSFMcontaining 10% FBS, or DKSFM without FBS. The proliferation of the second passage porcine keratinocytes cultivated with DKSFM without FBS was the slowest one among the 3 medium. The porcine keratinocytes that were purified by 0.02% EDTA and 005% trypsin step by step were got with high pure. After the keratinocytes were cultivated on the surface of amnion 12 days, the keratinocytes form a single layer on the surface of amnion and the cells were polygong and arranged like slabstone. After 14 and 16 days,the cells contacted more closely. But at 16 days after the cells were seeded, some of the cells got aging. Conclusion To culture primary porcine keratinocytes with the medium that DKSFMcontaining 10% FBS and to cultivate the second passage with the medium containing 5% FBS, the proliferation of porcine keratinocytes are faster. The method that purify the porcine keratinocytes is effective. Acellular amnion offers excellent bioscafold to support keratinocytes to adhere and grow. After the porcine keratinocytes are cultivated on the surface of the acellular amnion 12 days, the morphologic characteristics are better than that of other groups.
Objective To compare the reparative effects between the acellular small intestinal submucosa andthe acellular amnion as dressings for traumatic skin defects. Methods Three full-thickness skin defects, which wereclose to the vertebral column of the pig, were created on both sides of the dorsum. The skin defects were randomlydivided into three groups. In each group, the following different materials were used to cover the skin defects: theacellular amnion in Group A, the acellular small intestinal submucosa (SIS) in Group B, and the physiological saline aguze in Group C (the control group). The specimens from the skin defects were harvested for a histological evaluation and for determination of the hydroxyproline content at 10 (2 pigs), 20 (2 pigs), and 30 days (3 pigs). We observed the healing process of the wound and its healing rate, counted the inflammatory cells, vasecular endothelial cells, and proliferating cells, and determined the hydroxyproline content. Results The acellular amnion in Group A and acellular SIS in Group B adhered to the wound tightly, but they did not adhere to the dressing; when the dressing was changed, the wound did not bleed. The saline gauze in Group C adhred to the wound tightly, but when the dressing was changed, the wound bled until 22 days after operation. Under the microscope, the collagen in the tissue below the epithelium was arranged more regularly and there were fewer cells concerned with inflammation in Groups A and B than in Group C at 10, 20, and 30 days after operation. At 10, 20, and 30 days after operation, the wound healing rate was greater in Groups A and B than in Group C, The number of the inflammatory cells and the proliferating cells were greater in Groupo C than in Groups A and B. There was a statistically significant difference (P lt; 0.05),At 20 and 30 days after operatin, the content of hydroxyproline was greater in Group c than in Group A and B. There was a statistically significant difference (P lt; 0.05). However, there was no statistically significant difference between Group A and Group B in the wound healing rate, the numbers of the inflammatory cells, vascular endothelial cells and prokiferating cells, and the content of hydroxyproline(P gt; 0.050). There was no statistically significant difference among the three groups in the number of the vascular endothelial cells. Conclusion Compared with Group C........