west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "CUI Haipo" 2 results
  • Material design and temperature field simulation analysis of tumor radiofrequency ablation needle

    To solve the problems of small one-time ablation range and easy charring of the tissue around the electrode associated with the tumor radiofrequency ablation needle, based on the multiphysical field coupling analysis software COMSOL, the effects of needle material, the number of sub needles and the bending angle of sub needles on the ablation effect of radiofrequency ablation electrode needle were studied. The results show that compared with titanium alloy and stainless steel, nickel titanium alloy has better radiofrequency energy transmission efficiency and it is the best material for electrode needle. The number of sub needles has a great influence on the average necrosis depth and the maximum necrosis diameter. Under the same conditions, the more the number of sub needles, the larger the volume of coagulation necrosis area. The bending angle of the needle has a great effect on the maximum diameter of the coagulated necrotic area, but has little effect on the average necrotic depth. Under the same other conditions, the coagulation necrosis area formed by ablation increased with the increase of the bending angle of the sub needle. For the three needles with bending angles of 60 °, 90 ° and 120 ° analyzed in this paper, the one with bending angle of 120 ° can obtain the largest coagulation necrosis area. In general, the design of nickel titanium alloy with 120 ° bending 8-pin is the optimal. The average depth of radiofrequency ablation necrosis area is 32.40 mm, and the maximum necrosis diameter is 52.65 mm. The above optimized design parameters can provide guidance for the structure and material design of tumor radiofrequency ablation needle.

    Release date: Export PDF Favorites Scan
  • Design and analysis of shoulder type exoskeleton stretcher for individual soldier

    For the transportation process of rescuing wounded personnel on naval vessels, a new type of shoulder type exoskeleton stretcher for individual soldier was designed in this paper. The three-dimensional model of the shoulder type exoskeleton stretcher for individual soldier was constructed using three dimensional modeling software. Finite element analysis technique was employed to conduct statics simulation, modal analysis, and transient dynamics analysis on the designed exoskeleton stretcher. The results show that the maximum stress of the exoskeleton stretcher for walking on flat ground is 265.55 MPa, which is lower than the allowable strength of the fabrication material. Furthermore, the overall deformation of the structure is small. Modal analysis reveals that the natural frequency range of the exoskeleton stretcher under different gait conditions is 1.96 Hz to 28.70 Hz, which differs significantly from the swing frequency of 1 Hz during walking. This indicates that the designed structure can effectively avoid resonance. The transient dynamics analysis results show that the maximum deformation and stress of exoskeleton stretcher remain within the safety range, which meets the expected performance requirements. In summary, the shoulder type exoskeleton stretcher for individual soldier designed in this study can solve the problem of requiring more than 2 people to carry for the existing stretcher, especially suitable for narrow spaces of naval vessels. The research results of this paper can provide a new solution for the rescue of wounded personnel on naval vessels.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content