ObjectiveTo review the current progresses in purification strategies, biological characters, and functions of endothelial progenitor cells (EPCs) derived extracellular vesicles (EVs) (EPC-EVs). MethodsRecent relevant publications on the EPC-EVs were extensively reviewed, analyzed, and summarized. ResultsEPC-EVs are usually isolated by differential centrifugation and exhibit a homogenous pattern of spheroid particles with a diameter ranging from 60 to 160 nm under transmission electron microscopy. EPC-EVs are positive for cell-surface markers of EPCs (CD31, CD34, and CD133), and negative for markers of platelets (P-selectin and CD42b) and monocytes (CD14). Recent studies have shown the effectiveness of EPC-EVs in ischemic injuries, anti-Thy1 glomerulonephritis, and cardiomyocyte hypertrophy, and also shown their predictive role in cardio-cerebral-vascular diseases. ConclusionAn alluring prospect exists on the EPC-EVs-related research. Further studies are required to decipher the composition of EPC-EVs and their precise role in pathophysiological processes, and to investigate the molecular mechanisms for their targeting and function.
Objective To summarize the bioactive substances contained in bacterial extracellular vesicles (EVs) and their mechanisms in mediating bacterial-bacterial and bacterial-host interactions, as well as their mechanisms for use in implant infection-associated clinical guidance. Methods A wide range of publications on bacterial-derived EVs were extensively reviewed, analyzed, and summarized. Results Both gram-negative bacteria (G– bacteria) and gram-positive bacteria (G+ bacteria) can secrete EVs which contain a variety of bioactive substances, including proteins, lipids, nucleic acids, and virulence factors, and mediate bacterial-bacterial and bacterial-host interactions. EVs play an important role in the pathogenic mechanism of bacteria. Conclusion Bioactive substances contained within bacteria-derived EVs play an important role in the pathogenesis of bacterial infectious diseases. In-depth study and understanding of their pathogenic mechanisms can provide new insights which will improve early clinical diagnosis, prevention, and treatment of implant-associated infection. However, at present, research in this area is still in its infancy, and many more in-depth mechanisms need to be further studied.
Objective To review the mechanism of extracellular vesicles (EVs) in treating intervertebral disc degeneration (IVDD). Methods The literature about EVs was reviewed and the biological characteristics and mechanism of EVs in the treatment of IVDD were summarized. Results EVs are a kind of nano-sized vesicles with a double-layered lipid membrane structure secreted by many types of cells. EVs contain many bioactive molecules and participate in the exchange of information between cells, thus they play important roles in inflammation, oxidative stress, senescence, apoptosis, and autophagy. Moreover, EVs are found to slow down the process of IVDD by delaying the pathological progression of the nucleus pulposus, cartilage endplates, and annulus fibrosus. Conclusion EVs is expected to become a new strategy for the treatment of IVDD, but the specific mechanism remains to be further studied.