west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "FAN Yubo" 13 results
  • Recent research progress of bioactivity mechanism and application of bone repair materials

    Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.

    Release date:2018-09-03 10:13 Export PDF Favorites Scan
  • Simulation of spontaneous breathing for healthy adults using a nonlinear airway-segmented model of respiratory mechanics

    One-compartment lumped-parameter models of respiratory mechanics, representing the airflow resistance of the tracheobronchial tree with a linear or nonlinear resistor, are not able to describe the mechanical property of airways in different generations. Therefore, based on the anatomic structure of tracheobronchial tree and the mechanical property of airways in each generation, this study classified the human airways into three segments: the upper airway segment, the collapsible airway segment, and the small airway segment. Finally, a nonlinear, multi-compartment lumped-parameter model of respiratory mechanics with three airway segments was established. With the respiratory muscle effort as driving pressure, the model was used to simulate the tidal breathing of healthy adults. The results were consistent with the physiological data and the previously published results, suggesting that this model could be used for pathophysiological research of respiratory system.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Bibliometric analysis on international cooperation of rehabilitation robots in China from 2000 to 2019

    Rapid development is undergoing in the field of rehabilitation robots, and more countries (regions) are participating in international cooperation and becoming academic contributors. Here in this study, the bibliometric method is used to determine the dynamics and developments of international cooperation in China. The publication data are indexed in Web of Science with search term of rehabilitation robot from 2000 to 2019. Compared with other countries (regions), publication with international co-authors and institutes participating in international cooperation are studied by assessment of indicators such as the cooperation degree, cooperation frequency, and the frequency of citations. The results show that in the past two decades, international scientific cooperation has shown a positive tendency in China, and participating in international collaboration could improve China’s impact on the global rehabilitation robot. The United States, England and Japan are the top three countries in number of cooperation with China. Our findings provide valuable information for researchers to better understand China’s international scientific collaboration in rehabilitation robot.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Differentiation of stem cells regulated by biophysical cues

    Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.

    Release date: Export PDF Favorites Scan
  • Estimation of lung recruitment characteristics using the static pressure-volume curve of lungs

    Mechanical ventilation is an importmant life-sustaining treatment for patients with acute respiratory distress syndrome. Its clinical outcomes depend on patients’ characteristics of lung recruitment. Estimation of lung recruitment characteristics is valuable for the determination of ventilatory maneurvers and ventilator parameters. There is no easily-used, bedside method to assess lung recruitment characteristics. The present paper proposed a method to estimate lung recruitment characteristics from the static pressure-volume curve of lungs. The method was evaluated by comparing with published experimental data. Results of lung recruitment derived from the presented method were in high agreement with the published data, suggesting that the proposed method is capable to estimate lung recruitment characteristics. Since some advanced ventilators are capable to measure the static pressure-volume curve automatedly, the presented method is potential to be used at bedside, and it is helpful for clinicians to individualize ventilatory manuevers and the correpsonding ventilator parameters.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent

    This study aims to investigate whether displacement force on stents can accurately represents the displacement of the stent after endovascular aneurysm repair (EVAR) by comparing the measured stent displacement with the displacement forces calculated by computational fluid dynamics (CFD). And the effect of cross-limb and parallel-limb EVAR on stent displacements is further studied. Based on our objective, in this study, ten cross-limb EVAR patients and ten parallel-limb EVAR patients in West China Hospital of Sichuan University were enrolled. Patient-specific models were first reconstructed based on the computed tomography angiography images, then the stent displacements were measured, and the displacement forces acting on the stents were calculated by CFD. Finally, the \begin{document}$ \mathrm{cos}\;\alpha $\end{document} value of the angle between the displacement force and the displacement vector was used to analyze the matching degree between the displacement and the displacement force. The results showed that the displacement forces on cross-limb stents and parallel-limb stents were (2.67 ± 2.14) N and (1.36 ± 0.48) N, respectively. Displacements of stent gravity center, stent displacements relative to vessel, and vessel displacements of cross-limb and parallel-limb stents were (4.43 ± 2.81) mm and (6.39 ± 2.62) mm, (0.88 ± 0.67) mm and (1.11 ± 0.71) mm, (3.55 ± 2.88) mm and (5.28 ± 2.52) mm, respectively. The mean \begin{document}$ \mathrm{cos}\;\alpha $\end{document} for cross-limb and parallel-limb stents were 0.02 ± 0.66 and − 0.10 ± 0.73, respectively. This study indicates that the displacement force on the stent can’t accurately represent the displacement of the stent after EVAR. In addition, the cross-limb EVAR is probably safer and more stable than the parallel-limb EVAR.

    Release date: Export PDF Favorites Scan
  • Primary study on recognition of vascular stiffness based on wavelet scattering neural network

    Cardiovascular disease is the leading cause of death worldwide, accounting for 48.0% of all deaths in Europe and 34.3% in the United States. Studies have shown that arterial stiffness takes precedence over vascular structural changes and is therefore considered to be an independent predictor of many cardiovascular diseases. At the same time, the characteristics of Korotkoff signal is related to vascular compliance. The purpose of this study is to explore the feasibility of detecting vascular stiffness based on the characteristics of Korotkoff signal. First, the Korotkoff signals of normal and stiff vessels were collected and preprocessed. Then the scattering features of Korotkoff signal were extracted by wavelet scattering network. Next, the long short-term memory (LSTM) network was established as a classification model to classify the normal and stiff vessels according to the scattering features. Finally, the performance of the classification model was evaluated by some parameters, such as accuracy, sensitivity, and specificity. In this study, 97 cases of Korotkoff signal were collected, including 47 cases from normal vessels and 50 cases from stiff vessels, which were divided into training set and test set according to the ratio of 8 : 2. The accuracy, sensitivity and specificity of the final classification model was 86.4%, 92.3% and 77.8%, respectively. At present, non-invasive screening method for vascular stiffness is very limited. The results of this study show that the characteristics of Korotkoff signal are affected by vascular compliance, and it is feasible to use the characteristics of Korotkoff signal to detect vascular stiffness. This study might be providing a new idea for non-invasive detection of vascular stiffness.

    Release date: Export PDF Favorites Scan
  • A simulation study with finite element model on the unequal loss of peripheral vision caused by acceleration

    An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (Gz), right-to-left (Gy), chest-to-back (Gx) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • An optical coherent imaging system for measuring the strain of blood vessels

    We aimed to establish an optical coherence tomography (OCT) system to measure the strain of blood vessels. A general OCT system was constructed firstly and its reliability was confirmed by comparing the OCT imaging of the porcine coronary and the corresponding histological slices. The strain of the porcine coronary was induced by static flow pressure and correlation algorithm was used to calculate the strain field of blood vessels within OCT images. The results suggest that bright-dark stratification of blood vessels displayed in OCT images is consistent with the intima and media layers of histological image. Furthermore, the strain of media layer is greater than that of the intima layer under the same static pressure. The optical coherence imaging system could not only measure the histological structure of the blood vessels, but also qualify the vessel strain under flow pressure.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • A numerical analysis of the effects of the lower-limb prosthetic socket on muscle atrophy of the residual limb

    Muscle atrophy of the residual limb after lower-limb amputation is a disadvantage of amputees' rehabilitation. To investigate the biomechanics mechanism of muscle atrophy of the residual limb, we built a finite element model of a residual limb including muscle, skeletons and main vessels based on magnetic resonance images of a trans-femoral amputee, and studied the biomechanics effects of the socket of the lower-limb prosthesis on the soft tissue and vessels in the residual limb. It was found that the descending branch of the lateral femoral circumflex artery suffered the most serious constriction due to the extrusion, while that of the deep femoral artery was comparatively light. Besides, the degree of the constriction of the descending branch of the lateral femoral circumflex vein, femoral vein and deep femoral vein decreased in turn, and that of the great saphenous vein was serious. The stress-strain in the anterior femoral muscle group were highest, while the stress concentration of the inferior muscle group was observed at the end of the thighbone, and other biomechanical indicators at the inferior region were also high. This study validated that the extrusion of the socket on the vessels could cause muscle atrophy to some degree, and provided theoretical references for learning the mechanism of muscle atrophy in residual limb and its effective preventive measures.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content