1. |
Khan K N, Khan F A, Abid A, et al. Deep learning based classification of unsegmented phonocardiogram spectrograms leveraging transfer learning. Physiol Meas, 2021, 42(9). DOI: 10.1088/1361-6579/ac1d59.
|
2. |
Khodnapur J P, Das K K. Age-associated changes in vascular health and its relation with erythropoietin. Indian J Physiol Pharmacol, 2021, 65(2): 119-126.
|
3. |
Garcia-Rios A, Ordovas J M. Chronodisruption and cardiovascular disease. Clin Investig Arterioscler, 2022, 34(Suppl 1): S32-S37.
|
4. |
Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension, 2001, 37(5): 1236-1241.
|
5. |
Stork S, van den Beld A W, von Schacky C, et al. Carotid artery plaque burden, stiffness, and mortality risk in elderly men: a prospective, population-based cohort study. Circulation, 2004, 110(3): 344-348.
|
6. |
Wu S, Jin C, Li S, et al. Aging, arterial stiffness, and blood pressure association in Chinese adults. Hypertension, 2019, 73(4): 893-899.
|
7. |
Gomez-Sanchez M, Patino-Alonso M C, Gomez-Sanchez L, et al. Reference values of arterial stiffness parameters and their association with cardiovascular risk factors in the Spanish population. The EVA Study. Rev Esp Cardiol (Engl Ed), 2020, 73(1): 43-52.
|
8. |
Mattace-Raso F U S, van der Cammen T J M, Hofman A, et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation, 2006, 113(5): 657-663.
|
9. |
Janic M, Lunder M, Sabovic M. Arterial stiffness and cardiovascular therapy. Biomed Res Int, 2014, 2014: 621437.
|
10. |
Tomiyama H, Yamashina A. Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J, 2010, 74(1): 24-33.
|
11. |
Jung J Y, Lee Y B, Kang C K. Novel technique to measure pulse wave velocity in brain vessels using a fast simultaneous multi-slice excitation magnetic resonance sequence. Sensors (Basel), 2021, 21(19): 6352.
|
12. |
Weir-McCall J R, Brown L, Summersgill J, et al. Development and validation of a path length calculation for carotid-femoral pulse wave velocity measurement: A TASCFORCE, SUMMIT, and Caerphilly Collaborative Venture. Hypertension, 2018, 71(5): 937-945.
|
13. |
Németh Z K, Studinger P, Kiss I, et al. The method of distance measurement and torso length influences the relationship of pulse wave velocity to cardiovascular mortality. Am J Hypertens, 2011, 24(2): 155-161.
|
14. |
Millasseau S C, Stewart A D, Patel S J, et al. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension, 2005, 45(2): 222-226.
|
15. |
Tanishiro H, Funakubo A, Fukui Y. An experimental study on the relationship between artificial Korotkoff sounds and self-excited oscillation using a circulatory simulator. Cardiovasc Eng, 2003, 3(3): 85-91.
|
16. |
Babbs C F. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements. J Am Soc Hypertens, 2015, 9(12): 935-950.e3.
|
17. |
Celler B G, Butlin M, Argha A, et al. Are Korotkoff sounds reliable markers for accurate estimation of systolic and diastolic pressure using brachial cuff sphygmomanometry? IEEE Trans Biomed Eng, 2021, 68(12): 3593-3601.
|
18. |
Anden J, Mallat S. Deep scattering spectrum. IEEE Trans Signal Process, 2014, 62(16): 4114-4128.
|
19. |
Bruna J, Mallat S. Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1872-1886.
|
20. |
Bruna J, Mallat S. Classification with scattering operators// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs: IEEE, 2011: 1561-1566.
|
21. |
Argha A, Celler B G, Lovell N H. A novel automated blood pressure estimation algorithm using sequences of Korotkoff sounds. IEEE J Biomed Health Inform, 2021, 25(4): 1257-1264.
|
22. |
Mallat S. Understanding deep convolutional networks. Philos Trans A Math Phys Eng Sci, 2016, 374(2065): 20150203.
|
23. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
24. |
Chen Y, Lv J, Sun Y, et al. Heart sound segmentation via Duration Long–Short Term Memory neural network. Appl Soft Comput, 2020, 95: 106540.
|
25. |
Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015: 1412–1421.
|