1. |
梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割. 光学精密工程, 2022, 30(16): 2021-2038.
|
2. |
Song P, Li J, Fan H. Attention based multi-scale parallel network for polyp segmentation. Comput Biol Med, 2022, 146: 105476-105476.
|
3. |
Nogueira-Rodríguez A, Dominguez-Carbajales R, Campos-Tato F, et al. Real-time polyp detection model using convolutional neural networks. Neural Comput Appl, 2022, 34(13): 10375-10396.
|
4. |
敬雅冉, 千奕, 蒲天磊, 等. 塑闪阵列探测器读出ASIC阈值产生与调节电路的设计. 电子科技大学学报, 2022, 51(3): 402-407.
|
5. |
Zhao C, Shuai R, Ma L, et al. Segmentation of skin lesions image based on U-Net++. Multimed Tools Appl, 2022, 81(6): 8691-8717.
|
6. |
支佩佩, 邓健志, 钟震霄. 基于卷积和注意力机制的医学细胞核图像分割网络. 生物医学工程学杂志, 2022, 39(4): 730-739.
|
7. |
Poudel S, Lee S W. Deep multi-scale attentional features for medical image segmentation. Appl Soft Comput, 2021, 109: 107445.
|
8. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2020: 2010.11929.
|
9. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv, 2021: 2102.04306.
|
10. |
Dong B, Wang W, Fan D P, et al. Polyp-PVT: Polyp segmentation with pyramid vision transformers. arXiv, 2021: 2108.06932.
|
11. |
Gao Y, Zhou M, Metaxas D N. UTNet: a hybrid transformer architecture for medical image segmentation// de Bruijne M, Cattin P C, Cotin S, et al. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021. Cham: Springer International Publishing, 2021, 12903: 61-71.
|
12. |
Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst, 2021, 34: 12077-12090.
|
13. |
Zhou B, Zhao H, Puig X, et al. Semantic understanding of scenes through the ADE20K dataset. Int J Comput Vis, 2019, 127(3): 302-321.
|
14. |
徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法. 光学精密工程, 2022, 30(8): 970-983.
|
15. |
Huang X, Zhuo L, Zhang H, et al. Polyp segmentation network with hybrid channel-spatial attention and pyramid global context guided feature fusion. Comput Med Imaging Graph, 2022, 98: 102072.
|
16. |
Fan D P, Ji G P, Zhou T, et al. Pranet: Parallel reverse attention network for polyp segmentation// Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Cham: Springer, 2020, 12266: 263-273.
|
17. |
Lou A, Guan S, Ko H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects// Medical Imaging 2022: Image Processing. San Diego: SPIE, 2022, 12032: 81-92.
|
18. |
Tang Y, Han K, Guo J, et al. An image patch is a wave: Phase-aware vision MLP// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10935-10944.
|
19. |
Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput Med Imaging Graph, 2015, 43: 99-111.
|
20. |
Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-SEG: A segmented polyp dataset// Ro Y M, Cheng W, Kim J, et al. International Conference on Multimedia Modeling. Cham: Springer, 2020: 451-462.
|
21. |
Tajbakhsh N, Gurudu S R, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imaging, 2015, 35(2): 630-644.
|
22. |
Silva J, Histace A, Romain O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int J Comput Assist Radiol Surg, 2014, 9(2): 283-293.
|
23. |
Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett, 2018, 15(5): 749-753.
|
24. |
Wang J, Huang Q, Tang F, et al. Stepwise feature fusion: Local guides global. arXiv, 2022: 2203.03635.
|
25. |
Fang Y, Chen C, Yuan Y, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation// Shen Dinggang, Liu Tianming, Peters T M, et al. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 302-310.
|
26. |
Zhang R, Li G, Li Z, et al. Adaptive context selection for polyp segmentation// Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Cham: Springer, 2020, 12266: 253-262.
|
27. |
Patel K, Bur A M, Wang G. Enhanced U-Net: A feature enhancement network for polyp segmentation// 2021 18th Conference on Robots and Vision (CRV). Burnaby: IEEE, 2021: 181-188.
|
28. |
Wei J, Hu Y, Zhang R, et al. Shallow attention network for polyp segmentation// de Bruijne M, Cattin P C, Cotin S, et al. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021, 12901: 699-708.
|
29. |
Qiu Z, Wang Z, Zhang M, et al. BDG-Net: boundary distribution guided network for accurate polyp segmentation// Medical Imaging 2022: Image Processing. San Diego: SPIE, 2022, 12032: 792-799.
|
30. |
Jin Y, Hu Y, Jiang Z, et al. Polyp segmentation with convolutional MLP. Vis Comput, 2022: 1-19. DOI: 10.1007/s00371-022-02630-y.
|