1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
陈金东. 中国各类癌症的发病率和死亡率现状及发展趋势. 遵义医学院学报, 2018, 41(6): 653-662.
|
3. |
鲁欣, 蒋栋铭, 胡明, 等. 2004-2018年全国前列腺癌死亡率的流行特征及时间趋势. 上海预防医学, 2021, 33(10): 899-904.
|
4. |
刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
|
5. |
Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men. Nat Rev Urol, 2021, 18(5): 282-301.
|
6. |
曹德宏, 柳良仁, 魏强, 等. 前列腺癌的治疗研究进展. 华西医学, 2017, 32(2): 277-281.
|
7. |
中国抗癌协会泌尿男生殖系统肿瘤专业委员会前列腺癌学组. 前列腺癌筛查中国专家共识(2021年版). 中国癌症杂志, 2021, 31(5): 435-440.
|
8. |
郭吉锋, 纪志英, 解丙坤, 等. T2WI 联合 DWI 及 DCE 对外周带慢性前列腺炎与前列腺癌的诊断效能分析. 磁共振成像, 2020, 11(12): 1182-1185.
|
9. |
刘可文, 刘紫龙, 汪香玉, 等. 基于级联卷积神经网络的前列腺磁共振图像分类. 波谱学杂志, 2020, 37(2): 152-161.
|
10. |
Vincent G, Guillard G, Bowes M. Fully automatic segmentation of the prostate using active appearance models. Prostate MR Image Segmentation, 2012, 2012: 2.
|
11. |
Malmberg F, Strand R, Kullberg J, et al. Smart paint a new interactive segmentation method applied to MR prostate segmentation. Prostate MR Image Segmentation, 2012, 2012: 1.
|
12. |
张永德, 彭景春, 刘罡, 等. 基于水平集的前列腺磁共振图像分割方法研究. 仪器仪表学报, 2017, 38(2): 416-424.
|
13. |
Liu Q, Dou Q, Yu L, et al. MS-Net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE transactions on medical imaging, 2020, 39(9): 2713-2724.
|
14. |
Cuocolo R, Comelli A, Stefano A, et al. Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. Journal of Magnetic Resonance Imaging, 2021, 54(2): 452-459.
|
15. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich: Springer Lncs, 2015: 234-241.
|
16. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston: IEEE, 2015: 3431-3440.
|
17. |
Lei Y, Dong X, Tian Z, et al. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network. Med Phys, 2020, 47(2): 530-540.
|
18. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565-571.
|
19. |
Kohl S, Bonekamp D, Schlemmer H P, et al. Adversarial networks for the detection of aggressive prostate cancer. arXiv preprint, 2017, arXiv: 1702.08014.
|
20. |
Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal, 2014, 18(2): 359-373.
|
21. |
褚晶辉, 李晓川, 张佳祺, 等. 一种基于级联卷积网络的三维脑肿瘤精细分割. 激光与光电子学进展, 2019, 56(10): 75-84.
|
22. |
张佳. 肺结节分割的V-Net模型改进研究. 上海: 东华大学,2021.
|
23. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
24. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas. arXiv preprint, 2018, arXiv: 1804.03999.
|
25. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift//International Conference On Machine Learning. Lille: PMLR, 2015: 448-456.
|
26. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.
|
27. |
Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections in biomedical image segmentation//International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Munich: Springer Cham, 2016: 179-187.
|
28. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens: Springer International Publishing, 2016: 424-432.
|
29. |
Ou Y, Doshi J, Erus G, et al. Multi-atlas segmentation of the prostate: a zooming process with robust registration and atlas selection. Medical Image Computing and Computer Assisted Intervention (MICCAI) Grand Challenge: Prostate MR Image Segmentation, 2012, 7: 1-7.
|