1. |
Alzheimer’s Association, 2021 Alzheimer’s disease facts and figures. Alzheimers Dement, 2021, 17(3): 327-406.
|
2. |
Alzheimer’s Association, 2022 Alzheimer’s disease facts and figures. Alzheimers Dement, 2022, 18(4): 700-789.
|
3. |
Beheshti I, Demirel H. Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput Biol Med, 2015, 64: 208-216.
|
4. |
Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med, 1995, 34(4): 537-541.
|
5. |
Alva M, Sonawane K. Hybrid feature vector generation for Alzheimer’s disease diagnosis using MRI images// 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Pune: ISBM School of Technology, 2019: 1-6.
|
6. |
Saravanakumar S, Thangaraj P. A computer aided diagnosis system for identifying Alzheimer’s from MRI scan using improved Adaboost. J Med Syst, 2019, 43(3): 76-83.
|
7. |
Uysal G, Ozturk M. Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods. J Neurosci Methods, 2020, 337: 108669.
|
8. |
Jain R, Jain N, Aggarwal A, et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res, 2019, 57: 147-159.
|
9. |
Ebrahimi A, Luo S, Chiong R. Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput Biol Med, 2021, 134: 104537.
|
10. |
Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage, 2020, 208: 116459.
|
11. |
Yu F, Zhao B Q, Ge Q Q, et al. A lightweight spatial attention module with adaptive receptive fields in 3D convolutional neural network for Alzheimer’s disease classification// International Conference on Pattern Recognition (ICPR), Chile: Universidad de Talca, 2021: 575-586.
|
12. |
Zhao Y, Dong Q, Zhang S, et al. Automatic recognition of fMRI-derived functional networks using 3D convolutional neural networks. IEEE Trans Biomed Eng, 2018, 65(9): 1975-1984.
|
13. |
Ramzan F, Khan M U G, Rehamt A, et al. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. J Med Syst, 2019, 44(2): 37.
|
14. |
Yu Q, Du Y, Chen J, et al. Application of graph theory to assess static and dynamic brain connectivity: approaches for building brain graphs. Proc IEEE, 2018, 106(5): 886-906.
|
15. |
Bessadok A, Mahjoub M A, Rekik I. Graph neural networks in network neuroscience. IEEE Trans Pattern Anal Mach Intell, 2022. DOI: 10.1109/TPAMI.2022.3209686.
|
16. |
Xu X, Li W, Tao M, et al. Effective and accurate diagnosis of subjective cognitive decline based on functional connection and graph theory view. Front Neurosci, 2020, 14: 577887.
|
17. |
Song X, Elazab A, Zhang Y. Classification of mild cognitive impairment based on a combined high-order network and graph convolutional network. IEEE Access, 2020, 8: 42816-42827.
|
18. |
Jiang H, Cao P, Xu M, et al. Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput Biol Med, 2020, 127: 104096.
|
19. |
Wang L J, Yuan W F, Zeng L, et al. Dementia analysis from functional connectivity network with graph neural networks. Inf Process Manage, 2022, 59(3): 102901.
|
20. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich: Springer, 2015: 234-241.
|
21. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 770-778.
|
22. |
Hu J, Shen L, Albanie S, et al. Squeeze-and-Excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023.
|
23. |
VM Eguíluz, Chialvo D R, Cecchi G A, et al. Scale-Free brain functional networks. Phys Rev Lett, 2005, 94(1): 018102.
|
24. |
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52(3): 1059-1069.
|
25. |
Kipf T N, Welling M. Semi-Supervised classification with graph convolutional networks. arXiv preprint, 2016, arXiv: 1609.02907.
|
26. |
Gao H Y, Ji S W. Graph U-Nets. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9): 4948-4960.
|
27. |
Kennedy J, Eberhart R. Particle swarm optimization// IEEE International Conference on Neural Networks (ICNN), Perth: IEEE, 1995, 48: 1942-1948.
|
28. |
Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm// IEEE International Conference on Systems, Man, and Cybernetics, Orlando: IEEE, 1997.
|
29. |
Kasun L, Zhou H, Huang G B, et al. Representational learning with ELMs for big data. IEEE Intell Syst, 2013, 28(6): 31-34.
|
30. |
Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs// Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach: NeurIPS Foundation, 2017: 1025-1035.
|
31. |
Du J, Zhang S, Wu G, et al. Topology adaptive graph convolutional networks// Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon: Academic Press, 2017.
|
32. |
Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural: higher-order graph neural networks// Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), Hawaii: AAAI, 2019: 4602-4609.
|