1. |
World Health Organization. World health statistics 2019: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization, 2019.
|
2. |
中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
|
3. |
Geddes L A. The direct and indirect measurement of blood pressure. Chicago: Year Book Medical Publishers, 1970: 08000-00014.
|
4. |
Booth J. A short history of blood pressure measurement. Proc R Soc Med, 1977, 70(11): 793-799.
|
5. |
Penaz J. Photoelectric measurement of blood pressure, volume and flow in the finger// Dresden Conference Committee of the 10th International Conference on Medicine and Biological Engineering. Dresden: Med Biol Eng Comput, 1973: 104.
|
6. |
Wippermann C F, Schranz D, Huth R G. Evaluation of the pulse wave arrival time as a marker for blood pressure changes in critically ill infants and children. J Clin Monit, 1995, 11(5): 324-328.
|
7. |
Ni Yongbin, Wang Hongyu, Hu Dayi, et al. The relationship between pulse wave velocity and pulse pressure in Chinese patients with essential hypertension. Hypertens Res, 2003, 26(11): 871-874.
|
8. |
Eom H, Lee D, Han S, et al. End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism. Sensors, 2020, 20(8): 2338.
|
9. |
Esmaelpoor J, Moradi M H, Kadkhodamohammadi A. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals. Comput Biol Med, 2020, 120: 103719.
|
10. |
Da U J, Lim K M. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features. Sci Rep, 2021, 11(1): 13539.
|
11. |
Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light. Opt Express, 2008, 16(26): 21434-21445.
|
12. |
Jain M, Deb S, Subramanyam A V. Face video based touchless blood pressure and heart rate estimation// 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP). Montreal: IEEE, 2016: 16599992.
|
13. |
Luo H, Yang D, Barszczyk A, et al. Smartphone-based blood pressure measurement using transdermal optical imaging Technology. Circ Cardiovasc Imag, 2019, 12(8): e008857.
|
14. |
Moody G B, Mark R G. Integration of real-time and off-line clinical data in the MIMIC database// Computers in Cardiology 1997. Lund: IEEE, 1997: 585-588.
|
15. |
Escobar B, Torres R. Feasibility of non-invasive blood pressure estimation based on pulse arrival time: A MIMIC database study// Computing in Cardiology 2014. Cambridge: IEEE, 2014: 1113-1116.
|
16. |
Prauzek M, Peterek T, Adamec O, et al. Simple data acquisition system for photopletysmography and electrocardiography// 2010 2nd International Conference on Signal Processing Systems. Dalian: IEEE, 2010: V2-377-V2-379.
|
17. |
Kwon S, Kim J, Lee D, et al. ROI analysis for remote photoplethysmography on facial video// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 4938-4941.
|
18. |
Wang W, Brinker A, Stuijk S, et al. Color-distortion filtering for remote photoplethysmography// 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). Washington: IEEE, 2017: 71-78.
|
19. |
Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput, 1997, 9(7): 1483-1492.
|
20. |
王建雄, 张立民, 钟兆根. 基于FastICA算法的盲源分离. 计算机技术与发展, 2011, 21(12): 93-96.
|
21. |
Alpert B S. Validation of the welch Allyn SureBP (inflation) and StepBP (deflation) algorithms by AAMI standard testing and BHS data analysis. Blood Press Monit, 2011, 16(2): 96-98.
|
22. |
O’Brien E, Petrie J, Littler W, et al. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens, 1990, 8(7): 607-619.
|
23. |
Elman J. Finding structure in time. Cognitive Sci, 1990, 14(2): 179-211.
|
24. |
Paiva J S, Cardoso J, Pereira T. Supervised learning methods for pathological arterial pulse wave differentiation: a SVM and neural networks approach. Int J Med Inform, 2018, 109: 30-38.
|
25. |
Chang C C, Lin C J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol, 2007, 2(3): 1-27.
|
26. |
Sakr G E, Mokbel M, Darwich A, et al. Comparing deep learning and support vector machines for autonomous waste sorting// 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET). Beirut: IEEE, 2016: 207-212.
|
27. |
Lee S, Chang J H. Deep belief networks ensemble for blood pressure estimation. IEEE Access, 2017, 5: 9962-9972.
|
28. |
Haury A C, Gestraud P, Vert J P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One, 2011, 6(12): e28210.
|