At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs’ bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.
Objective To observe the change of sino-atrial nodal tissue structure and ectopic pacing function after xenogenic sino-atrial nodal tissue transplanted into left ventricular wall, so as to provide new ideas for the treatment of sick sinus syndrome and severe atrioventricular block. Methods Seventy healthy rabbits were selected, male or female, and weighing 1.5-2.0 kg. Of them, 42 were used as reci pient animals and randomly divided into sham operation group, warm ischemia transplantation group, and cold ischemia transplantation group (n=14), the other 28 were used as donors of warm ischemia and cold ischemia transplantation groups, which were sibl ing of the recipients. In recipients, a 6-mm-long and about 2-mm-deep incision was made in the vascular sparse area of left ventricular free wall near the apex. In sham operation group, the incision was sutrued directly by 7-0 Prolene suture; in cold ischemia transplantation group, after the aortic roots cross-clamping, 4 ℃ cold crystalloid perfusion fluid infusion to cardiac arrest, then sinoatrial node were cut 5 mm × 3 mm for transplantation; in warm ischemia transplantation group, the same size of the sinus node tissue was captured for transplantation. After 1, 2, 3, and 4 weeks, 3 rabbits of each group were harvested to make bradycardia by stimulating bilateral vagus nerve and the cardiac electrical activity was observed; the transplanted sinus node histology and ultrastructural changes were observed. Results Thirty-six recipient rabbits survived (12 rabbits each group). At 1, 2, 3, and 4 weeks after bilateral vagus nerve stimulation, the cardiac electrical activity in each group was significantly slower, and showed sinus bradycardia. Four weeks after operation the heart rates of sham operation group, warm ischemia, and cold ischemia transplantation group were (81.17 ± 5.67), (82.42 ± 7.97), and (80.83 ± 6.95) beats/ minute, respectively; showing no significant difference among groups (P gt; 0.05). And no ectopic rhythm of ventricular pacing occurred. Sino-atrial nodal tissue survived in 6 of warm ischemic transplantation group and in 8 of cold ischemia transplantation group; showing no significant difference between two groups (P gt; 0.05). Two adjacent sinoatrial node cells, vacuole-l ike structure in the cytoplasm, a few scattered muscle microfilaments, and gap junctions between adjacent cells were found in transplanted sinus node. Conclusion The allograft sinus node can survive, but can not play a role in ectopic pacing.
Objective To study the influence of ischemia-reperfusion on the expression of the hyperpolarization activated cycl icnucleotide gated cation channel 4 (HCN4) and to discuss the mechanism of functional disturbance of sinoatrial node tissue (SANT) after ischemia reperfusion injury (IRI). Methods Eighty five healthy adult rabbits, weighing 2-3 kg, were randomly divided into 3 groups: control group [a suture passed under the root section of right coronary artery (RCA) without l igation, n=5], experimental group A (occluding the root section of RCA for 30 minutes, then loosening the root 2,4, 8 and 16 hours, n=10), experimental group B (occluding the root section of RCA for 1 hour, then loosening the root 2, 4,8 and 16 hours, n=10). At the end of the reperfusion, the SANT was cut off to do histopathological, transmission electronmicroscopical and immunohistochemical examinations and semi-quantitative analysis. Results The result of HE stainingshowed that patho-injure of sinoatrial node cell (SANC) happened in experimental groups A and B after 2 hours of reperfusion, the longer the reperfusion time was, the more serious patho-injure of SANC was after 4 and 8 hours of reperfusion, SANC reached peak of damage after 8 to 16 hours of reperfusion; patho-injure of SANC was more serious in experimental group B than in experimental group A at the same reperfusion time. Immunohistochemical staining showed that the expression of HCN4 located in cellular membrane and cytoplasm in the central area of SANC and gradually decreased from the center to borderl ine. The integral absorbance values of HCN4 expression in the control group (397.40 ± 34.11) was significantly higher than those in the experimental group A (306.20 ± 35.77, 216.60 ± 18.59, 155.40 ± 19.11 and 135.00 ± 12.30) and in the experimental group B (253.70 ± 35.66, 138.70 ± 13.28, 79.10 ± 9.60 and 69.20 ± 8.42) after 2, 4, 8 and 16 hours of reperfusion (P lt; 0.05). With reperfusion time, the expression of HCN4 of SANC decreased, which was lowest after 8 hours of reperfusion; showing significant difference among 2, 4 and 8 hours after reperfusion (P lt; 0.05) and no significant difference between 8 and 16 hours after reperfusion (P gt; 0.05). At the same reperfusion time, the expression of HCN4 was higher in the experimental group A than in the experimental group B. The result of transmission electron microscope showed that ultramicrostructure of SANC was damaged after reperfusion in experimental groups A and B. The longer the reperfusion time was, the more serious ultramicrostructure damage of SANC was, and reached the peak of damage after 8 hours of reperfusion. Ultramicrostructure of SANC was not different between 8 and 16 hours of reperfusion. At the same reperfusion time, the ultramicrostructure damage of SANC was moreserious in experimental group B than in experimental group A. Conclusion IRI is harmful to the morphous and structure ofSANC, and effects the expression of HCN4 of SANC, which is concerned with functional disturbance and arrhythmia.