Transcranial direct current stimulation (tDCS) is a non-invasive low-current brain stimulation technique, which is mainly based on the different polarity of electrode stimulation to make the activation threshold of neurons different, thereby regulating the excitability of the cerebral cortex. In this paper, healthy subjects were randomly divided into three groups: anodal stimulation group, cathodal stimulation group and sham stimulation group, with 5 subjects in each group. Then, the performance data of the three groups of subjects were recorded before and after stimulation to test their mental rotation ability, and resting state and task state electroencephalogram (EEG) data were collected. Finally, through comparative analysis of the behavioral data and EEG data of the three groups of subjects, the effect of electrical stimulation of different polarities on the three-dimensional mental rotation ability was explored. The results of the study found that the correct response time/accuracy rate and the accuracy rate performance of the anodal stimulation group were higher than those of the cathodal stimulation and sham stimulation groups, and there was a significant difference (P < 0.05). The alpha wave power analysis found that the mental rotation mainly activates the frontal lobe, central area, parietal lobe and occipital lobe. In the anodal stimulation group, the alpha wave power changed significantly in the frontal lobe and occipital lobe (P < 0.05). The results of this paper show that anodal stimulation group can improve the mental rotation ability of the subjects to a certain extent. The results of this paper can provide important theoretical support for further research on the mechanism of tDCS on mental rotation ability.
Cognitive enhancement refers to the technology of enhancing or expanding the cognitive and emotional abilities of people without psychosis based on relevant knowledge of neurobiology. The common methods of cognitive enhancement include transcranial direct current stimulation (tDCS) and cognitive training (CT). tDCS takes effect quickly, with a short effective time, while CT takes longer to work, requiring several weeks of training, with a longer effective time. In recent years, some researchers have begun to use the method of tDCS combined with CT to regulate the cognitive function. This paper will sort out and summarize this topic from five aspects: perception, attention, working memory, decision-making and other cognitive abilities. Finally, the application prospect and challenges of technology are prospected.