ObjectiveTo study the mechanism of reducing the intratumoral microvessel density (MVD) by Ginsenoside Rg3 (Rg3) combined with cytotoxic agent in xenotransplanted human breast infiltrating duct carcinoma in nude mice. MethodsSixteen female nude mice were randomly divided into 4 groups to receive cyclophosphamid (16 mg/kg,qd) combined with Rg3 (10 mg/kg, qd),Rg3(10 mg/kg,qd) alone,cyclophosphamid (16 mg/kg,qd) alone and 0.5% sodium carboxymethyl cellulose (0.5 ml,qd) respectively for 55 days. Breast cancer mass were weighed and sampled for light microscopic observation. The intratumor MVD was examined by immunohistochemical staining. ResultsThe tumor weight of treated group was significantly lower than that of control group. The tumor weight of the Rg3 combined with CTX group was lower than that of Rg3 group. The MVD value of Rg3 group was significantly lower than that of CTX group and control group. The MVD was significantly reduced in the Rg3 combined with CTX group than that in the others.ConclusionRg3 combined with CTX can inhibit the growth of xenotransplanted human breast infiltrating duct carcinoma, and reduce the intratumoral MVD.
Objective Ginsenoside Rg1 could increase the tolerance of neural hypoxia and ischemia under stress, and play an anti-apoptotic effect in hypoxia ischemia brain damage (HIBD). To investigate the effects of ginsenoside Rg1 on neural apoptosis and recovery of neurological function in neonatal rats with HIBD, and to explore the possible mechanism. Methods Fifty-four 10-day-old SD rats (weighing 16-22 g) were randomly allocated into sham-operation group (Sham group, n=6), HIBD model group (HIBD group, n=24), and ginsenoside Rg1 treatment group (Rg1 group, n=24). SDrats in HIBD group and Rg1 group were made the models of HIBD by l igation of the right common carotid artery (CCA) and subsequently hypoxic ventilation (8%O2 plus 92%N2) for 2.5 hours; and in Sham group, the right CCA was only exposed without l igation of CCA and hypoxic ventilation. Intraperitoneal injection of 0.1 mL normal sal ine (NS) containing 40 mg/kg Rg1 was given immediately after operation in Rg1 group, intraperitoneal injection of 0.1 mL pure NS was given in both HIBD group and Sham group and was repeated every 24 hours. The general state of SD rats was monitored after operation, and Longa scores were recorded to evaluate the neurological function at 4, 8, 24, and 72 hours after HIBD. Western blot and immunohistochemistry staining were used to detect protein expressions of both hypoxia inducible factor 1α (HIF-1α) and cleaved caspase 3 (CC3). TUNEL staining was used to evaluate neural apoptosis in situ. Results All rats survived to the end of the experiment. Neurological dysfunction was observed in both HIBD group and Rg1 group, showing significant difference in Longa score when compared with that in Sham group (P lt; 0.05). There was significant difference in Longa score between Rg1 group and HIBD group at 72 hours after HIBD (P lt; 0.05). Western blot showed that the protein expressions of both HIF-1α and CC3 were observed at every time point in every group. The expressions of HIF-1α protein in HIBD group and Rg1 group were significantly higher than those in Sham group at 4, 8, 24, and 72 hours (P lt; 0.05), and the expressions in Rg1 group were significantly higher than those in HIBD group (P lt; 0.05). The expressions of CC3 protein in HIBD group were significantly higher than those in Sham group at 4, 8, 24, and 72 hours (P lt; 0.05), and significant difference was found between Rg1 group and Sham group only at 4 hours (P lt; 0.05). Immunohistochemistry staining demonstrated that HIF-1α and CC3 protein mainly distributed in nucleusand cytoplasma, the results of HIF-1α and CC3 protein expression were similar to the results by Western blot. TUNEL staining showed that the positive cells were characterized by yellow or brown particle confined within nucleus. The number of apoptotic cells at every time point in HIBD group was significantly higher when compared with that in Sham group (P lt; 0.05), and the number of apoptotic cells in Rg1 group was significantly lower when compared with that in HIBD group at 8, 24, and 72 hours (P lt; 0.05). Conclusion Rg1 could inhibit Caspase 3 activation by strengthening and stabil izing HIF-1α signal pathway, and plays a role of anti-apoptosis in neonatal rats with HIBD.
OBJECTIVE: To investigate the effects of Ginsenoside Rb1 on the proliferation of Schwann cell cultured. METHODS: The sciatic nerve from SD rats was cultured in vitro; 10 micrograms/ml, 20 micrograms/ml, 200 micrograms/ml and 1 mg/ml Ginsenoside Rb1 was applied on the fifth day of culture. The proliferation of Schwann cells of sciatic nerves was determined in different time by MTT assay and thymidine incorporation assay. RESULTS: 10 micrograms/ml of Ginsenoside Rb1 significantly induced Schwann cell proliferation better than DMEM cell culture medium, but higher concentrations of Ginsenoside Rb1 at 1 mg/ml significantly inhibited the proliferation of Schwann cells, whereas 200 micrograms/ml of Ginsenoside Rb1 had similar effects to DMEM culture medium. CONCLUSION: Ginsenoside Rb1 at the optimal concentration is effective on inducing the proliferation of Schwann cells, but at higher concentration is cytotoxic for Schwann cells.
Objective To observe the effect of ginsenoside Rg3 on the proliferation, migration, and tube formation of human retinal capillary endothelial cell (HRCEC) cultured in normal and hypoxia condition. Methods HRCEC was cultured in normal condition and treated with 0.0 mmol/L (group A), 0.1 mmol/L (group B) and 0.5 mmol/L (group C) ginsenoside Rg3. HRCEC was also cultured in hypoxia condition and treated with 0.0 mmol/L (group D), 0.1 mmol/L (group E) and 0.5 mmol/L (group F) ginsenoside Rg3. The effects of ginsenoside Rg3 on HRCEC proliferation were measured by methylthiazoletrazolium assay in 24, 48 and 72 hours after culture. In 24 hours after culture, the effect of cell migration was evaluated by transwell chamber; the effect of tube formation was evaluated by Matrigel; the expression of vascular endothelial growth factor (VEGF) protein and mRNA were detected by Western blot and real-time quantitative reverse transcription-polymerase chain reaction. Results Ginsenoside Rg3 could inhibit proliferation of HRCEC, depending on the concentration (F=30.331 and 33.402 in normal and hypoxia condition, respectively; P<0.05) and time (F=85.462 and 136.045 in normal and hypoxia condition, respectively; P<0.05). The number of cell migration was 103.33plusmn;3.54, 92..25plusmn;3.68, 78.64plusmn;4.66 in group A, B and C, the difference among three groups was statistically significant (F=28.801, P<0.05). The number of cell migration was 125.76plusmn;3.11, 90.27plusmn;3.55, 77.81plusmn;5.01 in group D, E and F, the difference among three groups was statistically significant (F=117.594, P<0.05). The number of tube formed in Matrigel was 24.3plusmn;2.2, 15.7plusmn;1.7, 10.1plusmn;2.3 in group A, B and C, the difference among three groups was statistically significant (F=35.364, P<0.05). The number of tube formed in Matrigel was 26.2plusmn;1.9, 15.1plusmn;2.6, 8.6plusmn;1.9 in group D, E and F, the difference among three groups was statistically significant (F=50.989, P<0.05). The expression of VEGF mRNA was 1.00plusmn;0.06, 0.79plusmn;0.06, 0.68plusmn;0.02 in group A, B and C, the difference among three groups was statistically significant (F=31.303, P<0.05). The expression of VEGF mRNA was 3.88plusmn;0.12, 2.83plusmn;0.09, 1.15plusmn;0.05 in group D, E and F, the difference among three groups was statistically significant (F=682.668, P<0.05). The expression of VEGF protein was 0.62plusmn;0.03, 0.41plusmn;0.02, 0.32plusmn;0.02 in group A, B and C, the difference among three groups was statistically significant (F=125.471, P<0.05). The expression of VEGF protein was 0.91plusmn;0.03, 0.82plusmn;0.03, 0.71plusmn;0.02 in group D, E and F, the difference among three groups was statistically significant (F=41.045, P<0.05). Conclusion Ginsenoside Rg3 can inhibit the proliferation, migration, and tube formation of HRCEC through the inhibition of VEGF expression.
Objective To determine the effect of insulin-like growth factor-1 (IGF-1) on angiogenesis in mouse breast cancer model of lower and normal serum IGF-1 levels after using angiogenesis inhibitor ginsenoside Rg3 (GS Rg3). Methods The breast cancer models were established in control mice and liver specific IGF-1 deficient (LID) mice by feeding DMBA and were treated with GS Rg3. Vascular endothelial growth factor (VEGF) and F8-RAg were detected by immunohistochemical method in breast cancer tissues. IGF-1 gene and angiogenesis relating genes were detected by gene chip in breast cancer and normal breast tissue. Results The incidence rate of breast cancer in LID mice was lower than that in control mice (P<0.05). VEGF expression and microvessel density of LID mice were lower than those in control mice (P<0.05). Compared to the control mice, IGF-1, FGF-1, TGF-β1 and HGF genes were increased, and FGFR-2, PDGF-A and PDGF-B genes were decreased in breast cancer of LID mice. After GS Rg3 treatment, VEGFa, EGF, EGFR, PDGF-A and FGFR-2 genes were increased, IGF-1 and TGF-β1 genes were decreased in breast cancer of LID mice compared with the control mice. Conclusion IGF-1 may be involved in mouse breast cancer progression and associated with the growth of blood vessels. Angiogenesis inhibitor may play an antitumor role by IGF-1 and TGF-β1.
ObjectiveTo observe the anticancer efficacy of ginsenoside Rg3 on colorectal cancer in vitro and in vivo. MethodsMice colorectal cell line (CT26) was incubated in 96-well plates (3×103-4×103 per well) with various concentrations of ginsenoside Rg3 (0, 5, 10, 15, 20 μg/mL) for 24 hours and 48 hours. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-dipheny 1-2-H-tetrazolium bromide assay was used to detect the inhibitory rate of cells. Xenograft models were established by subcutaneous implantation of CT26 cells into BABL/c mice. Each mouse was injected with 1×107 cells suspended in serum-free medium. Xenograft mice were randomized into four groups: physiological saline group, ginsenoside Rg3 5 mg/kg group, ginsenoside Rg3 10 mg/kg group, and ginsenoside Rg3 20 mg/kg group. Ginsenoside Rg3 was administrated to mice by intragastric gavage. All animals were observed for activity, body weight, tumor size, survival time, mental state and adverse effect of ginsenoside Rg3. Hematoxylin-eosin stain was used for comparing necrosis rate among groups. ResultsThe inhibitory rates of cells were increasing following the elevating concentrations of ginsenoside Rg3. The anti-proliferation effect of ginsenoside Rg3 for 48 hours was weaker than the anti-proliferation effect for 24 hours. The decrease of mice body weight was slower than physiological saline group after administration of ginsenoside Rg3, and the number of mice with worse physiological state, lack of activity and loss of appetite in physiological saline group were more than that in ginsenoside Rg3 groups. However, these results among four groups were not significantly different (P>0.05). There were no obvious adverse effects of ginsenoside Rg3 found during the whole study. The necrosis rate of physiological saline group, Rg3 10 mg/kg group and Rg3 20 mg/kg group was 20%, 60% and 80% respectively. ConclusionGinsenoside Rg3, as a single agent, still has anticancer activity. The anticancer efficacy is increasing following the elevating concentrations of ginsenoside Rg3. Ginsenoside Rg3 is a dose dependent agent.
ObjectiveTo investigate the anti-apoptotic effect of ginsenoside Rg1 in neonatal rats with hypoxia ischemia brain damage (HIBD), and to explore the possible signaling pathway involved in anti-apoptosis. MethodsForty-eight 10-day-old Sprague Dawley (SD) rats (weighing 17-21 g, male or female) were randomly allocated into 4 groups (12 rats in each group): sham-operation group (sham group), HIBD group (HI group), HIBD+ginsenoside Rg1 group (HI+Rg1 group), and HIBD+ginsenoside Rg1+U0126 group (HI+Rg1+U0126 group). SD rats in HI group, HI+Rg1 group, and HI+Rg1+U0126 group underwent ligation of the right common carotid artery (CCA) and hypoxic ventilation (8%O2+92%N2) for 2.5 hours to prepare the HIBD model, and rats in sham group underwent only separation of the right CCA. SD rats in HI+Rg1+U0126 group received intraventricular injection of 5 μL phosphate buffer saline (PBS) containing U0126 (25 μg/kg) at 1 hour before HIBD, and rats in the other three groups received intraventricular injection of PBS at the same time. The rats in HI+Rg1 group and HI+Rg1+U0126 group received intraperitoneal injection of 0.1 mL normal saline (NS) containing Rg1 (40 mg/kg) at immediate after HIBD, while rats in HI group and sham group received intraperitoneal injection of 0.1 mL NS at immediate after HIBD. At 4 and 24 hours after HIBD, the right hemisphere and hippocampus were collected to detect the protein expression and distribution of extracellular signal-related protein kinase 1/2 (Erk1/2), phospho-Erk1/2 (p-Erk1/2), hypoxia inducible factor 1α (HIF-1α), and cleaved Caspase-3 (CC3) by Western blot and immunohistochemistry staining. TUNEL staining was used to evaluate neural apoptosis in situ. ResultsWestern blot results showed that there were expressions of Erk1/2, p-ERK1/2, HIF-1α, and CC3 proteins at 4 and 24 hours after HIBD in each group. The expressions of HIF-1α and CC3 protein at 4 and 24 hours, and expression of p-Erk1/2 protein at 4 hours were significantly increased in HI group when compared with sham group (P < 0.05). When compared with HI group, the expressions of p-Erk1/2 and HIF-1α protein in HI+Rg1 group were significantly increased (P < 0.05), while the expression of CC3 protein was significantly decreased at 4 and 24 hours (P < 0.05). When compared with HI+Rg1 group, the expressions of p-Erk1/2 and HIF-1α proteins in HI+Rg1+U0126 group were significantly decreased (P < 0.05), while expression of CC3 protein was significantly increased at 4 and 24 hours (P < 0.05). There was no significant difference in Erk1/2 protein expression between groups at different time points (P > 0.05). Immunohistochemistry staining displayed that HIF-1α and CC3 proteins mainly distributed in the nucleus and cytoplasma, while Erk1/2 and p-Erk1/2 proteins mainly distributed in the cytoplasma. The expression levels of protein by immunohistochemistry results were similar to the results by Western blot. TUNEL staining showed that the apoptotic neurons were characterized by yellow or brown particle in the nucleus. The apoptotic index (AI) of neurons at 4 and 24 hours was significantly increased in HI group when compared with sham group (P < 0.05), and the AI of neurons was significantly decreased in HI+Rg1 group when compared with HI group and HI+Rg1+U0126 group at 24 hours (P < 0.05). ConclusionRg1 could enhance HIBD induced HIF-1α expression and inhibit activation of Caspase-3 by Erk1/2 signaling pathway, and play an anti-apoptotic role in neonatal rats with HIBD.