Objective To construct the rhesus monkey Schwann cells (SCs) modified with human glial cell derived neurotrophic factor (hGDNF) gene. Methods The coding sequence of hGDNF amplified by PCR from pUC19-hGDNF was inserted into eukaryotic expression vector pBABE-puro. The recombinant eukaryotic expression vector pBABE-puro-hGDNF was identified with restriction enzyme digestion and DNA sequencing. The SCs were isolated from rhesus monkeys, cultured and purified. The SCs were transfected with the recombinant retrovirus vector containing hGDNF gene. The mRNA and protein expressions of hGDNF were analyzed by real-time fluorescent quantitative PCR and Western blot. Results The PCR product of hGDNF coding sequence was a 596 bp specific segment. The recombinant eukaryotic expression vector was digested into a 596 bp specific segment by specific restriction enzyme and another segment. The 596 bp segment confirmed by DNA sequencing was consistent with hGDNF sequence on GenBank. Restriction enzyme digestion and sequencing results showed that the coding sequence of hGDNF was successfully inserted into the recombinant retrovirus vector and the mRNA and protein expressions of hGDNF were significantly higher in transfected SCs than non-transfected SCs (P lt; 0.05). Conclusion The rhesus monkey SCs modified with hGDNF gene are successfully constructed and hGDNF can be released continuously and stably, which will provide a foundation for the further research about cell therapy of hGDNF-SCs in the repair of injured nerve.
【Abstract】 Objective To construct tissue engineered skeletal muscle in vivo using glial cell derived neurotrophic factor (GDNF) genetically modified myoblast (Mb) on acellular collagen sponge with hypoglossal nerve implantation, and to observe whether structural or functional connection could be established between engineered tissue and motor nerve or not. Methods Mbs were isolated from 7 male Lewis rats at age of 2 days, cultured and genetically modified by recombinant adenovirus carrying GDNF cDNA (MbGDNF). Calf skin-derived acellular collagen sponge was used as scaffold; cell adhesion was detected by scanning electron microscope after 24 hours. Hypoglossal nerve was implanted into Mb-scaffold complex (Mb group, n=27) or MbGDNF-scaffold complex (MbGDNF group, n=27) in 54 female Lewis rats at age of 8 weeks. HE staining was performed at 1, 6, and 12 weeks postoperatively, and immunohistochemistry staining and fluorescence in situ hybridization were used. Results MbGDNF could highly expressed GDNF gene. Mb and MbGDNF could adhere to the scaffold and grew well. HE staining showed tight junctions between implant and peripheral tissue with new muscle fiber and no distinguished line at 12 weeks in 2 groups. Immunohistochemistry staining showed that positive cells of myogenin and slow skeletal myosin were detected, as well as positive cells of actylcholine receptor α1 at 1, 6, and 12 weeks. The positive cells of Y chromosome decreased with time. At 1, 6, and 12 weeks, the positive neurons were 261.0 ± 6.6, 227.3 ± 8.5, and 173.3 ± 9.1, respectively in MbGDNF group, and were 234.7 ± 5.5, 196.0 ± 13.5, and 166.7 ± 11.7, respectively in Mb group; significant differences were found between 2 groups at 1 and 6 weeks (P lt; 0.05), no significant difference at 12 weeks (P gt; 0.05). Conclusion Connection can be established between engineered tissue and implanted hypoglossal nerve. Recombinant GDNF produced by MbGDNF might play a critical role in protecting central motor neurons from apoptosis by means of retrograde transportation.
Objective To identify glial cell line-derived neurotrophic factor (GDNF) recombinant retroviral vector and to establish its packaging cell line PA317. Methods PA317 cells were transfected with recombinant retroviral vector pLXSN-GDNF using liposomes. The recombinant retroviral particles were then harvested from culture media of G418 resistant transfected cells and analyzed using RT-PCR. Virus titers in supernatants were investigated. Results Sequencing date indicated that GDNF gene was exactly identical to the sequence in the GeneBank. PA317 cells were transfected with recombinant retroviral vector pLXSN-GDNF using liposomes, and virus titers insupernatants harvested from culture media of G418 resistant transfected cells were 104-105 CFU/ml. Conclusion Packaging cell line PA317/pLXSN-GDNF was established.
Objective To observe the effects of neural stem cells(NSCs) transplantation on the glial cell line-derived neurotrophic factor (GDNF) and growth associated protein 43(GAP-43) after the spinal cord injury(SCI), and to investigate the mechanism of repairing the SCI by NSCs transplantation. Methods The neural stem cells from the hippocampus of rats’ embryo were cultured and identified by immunocytochemistry. The SCI model was made by the modified Allen device. Sixty adult Wistar rats were randomly divided into three groups: spinal cord injury was treated with transplantation of NSCs (group A, n=24), with DMEM solution(group B, n=24) and normal control group without being injured(group C, n=12). Seven days after the operation of SCI, the NSCs were transplanted into the injured site. Then GAP-43 and GDNF expressions were tested by RT-PCR and immunohistochemistry. Results Compared with group B, the GDNF mRNA expression of group A increased by 23.3% on the 1st day, by 26.8% on the 3rd day and by 32.7% on the 7th day; the GAP-43 mRNA expression increased by 19.5% on the 1st day, 21.6% on the 3rd day and 23.1% on the 7th day. There were statistically significant differences(Plt;0.05). Conclusion The transplantation of NSCs can change the microenvironment injured site and promote the regeneration of axon by enhancing the expressions of GDNF mRNA and GAP-43 mRNA. It is one of the mechanisms of repairing the SCI by NSCs transplantation.
Objective To review research progress of the relation between glial cell line-derived neurotropic factor (GDNF) and motoneuron development and motoneuron disease. Methods The recent articles on GDNF and motonerons were extensively reviewed. The molecular structure, the mode of action and the route of administration of GDNF were investigated. Results GDNF plays extensive roles in the development anddisease of motoneuron. GDNF might regulate the development of the motonerons of the spinal cord to some extent and also save the injured motoneurons. Conclusion GDNF has a potential clinical value and inestimable futurein the treatment of motoneuron diseases.
We cultured retinal g[ial cells(RGC)from immature rats and observed the migratory responses to fetal bovine serum(FBS).We found thai FItS stimulats the migration of RGC in a dose response manner. We also observed the inhibition of heparin on RGC cben,otaxis,and found that heparin(10U/ml)decreased significantly the RGC migration stimulated by serum(0%to 10%)(all Plt;0.0001).but 1U/ml of heparin bad no effect on RGC chemotaxis(P=0.5118).These results showed that FBS contains chemoattractants for RGC,and heparin can inhibit RGC chemotaxis stimulated by serum. (Chin J Ocul Fundus Dis,1994,10:170-173)
ObjectiveTo investigate the protective effects of carboxymethylated chitosan (CMCS) on oxidative stress induced apoptosis of Schwann cells (SCs), and the expressions of brain derived neurotrophic factor (BDNF) and gl ial cell line derived neurotrophic factor (GDNF) in oxidative stress induced SCs. MethodsTwenty-four 3-5 days old Sprague Dawley rats (weighing 25-30 g, male or female) were involved in this study. The bilateral sciatic nerves of rats were harvested and SCs were isolated and cultured in vitro. The purity of SCs was identified by immunofluorescence staining of S-100. SCs were treated with different concentrations of hydrogen peroxide (H2O2, 0.01, 0.10, and 1.00 mmol/L) for 3, 6, 12, and 24 hours to establ ish the apoptotic model. The cell counting kit 8 (CCK-8) and flow cytometry analysis were used to detect the cell viabil ity and apoptosis induced by H2O2, and the optimal concentration and time for the apoptotic model of SCs were determined. The 2nd passage SCs were divided into 5 groups and were treated with PBS (control), with 1.00 mmol/L H2O2, with 1.00 mmol/L H2O2+50 μg/mL CMCS, with 1.00 mmol/L H2O2+100 μg/mL CMCS, and with 1.00 mmol/L H2O2+200 μg/mL CMCS, respectively. After cultured for 24 hours, the cell viabil ity was assessed by CCK-8, cell apoptosis was detected by flow cytometry analysis, the expressions of mRNA and protein of BDNF and GDNF were detected by real-time quantitative PCR and Western blot. ResultsThe immunofluorescence staining of S-100 indicated the positive rate was more than 95%. CCK-8 and flow cytometry results showed that H2O2 can inhibit the proliferation of SCs and induce the SCs apoptosis with dose dependent manner, the effect was the most significant at 1.00 mmol/L H2O2 for 24 hours; after addition of CMCS, SCs exhibited the increased proliferation and decreased apoptosis in a dose dependent manner. Real-time quantitative PCR and Western blot analysis showed that 1.00 mmol/L H2O2 can significantly inhibit BDNF and GDNF expression in SCs when compared with control group (P<0.05), 50-200 μg/mL CMCS can reverse the oxidative stress-induced BDNF and GDNF expression in SCs in a dose dependent manner, showing significant difference compared with control group and 1.00 mmol/L H2O2 induced group (P<0.05). There were significant differences among different CMCS treated groups (P<0.05). ConclusionCMCS has the protective stress on oxidative stress induced apoptosis of SCs, and may promote the BDNF and GDNF expressions of neurotrophic factors in oxidative stress induced SCs.
ObjectiveTo observe the effect of transplantation of neural stem cells (NSCs) induced by all-trans-retinoic acid (ATRA) combined with glial cell line derived neurotrophic factor (GDNF) and chondroitinase ABC (ChABC) on the neurological functional recovery of injured spinal cord in Sprague Dawley (SD) rats. MethodsSixty adult SD female rats, weighing 200-250 g, were randomly divided into 5 groups (n=12): sham operation group (group A), SCI model group (group B), NSCs+GDNF treatment group (group C), NSCs+ChABC treatment group (group D), and NSCs+GDNF+ChABC treatment group (group E). T10 segmental transversal injury model of the spinal cord was established except group A. NSCs induced by ATRA and marked with BrdU were injected into the site of injury at 8 days after operation in groups C-E. Groups C-E were treated with GDNF, ChABC, and GDNF+ChABC respectively at 8-14 days after operation;and group A and B were treated with the same amount of saline solution. Basso Beattie Bresnahan (BBB) score and somatosensory evoked potentials (SEP) test were used to study the functional improvement at 1 day before remodeling, 7 days after remodeling, and at 1, 2, 5, and 8 weeks after transplantation. Immunofluorescence staining and HE staining were performed to observe the cells survival and differentiation in the spinal cord. ResultsFive mouse died but another rats were added. At each time point after modeling, BBB score of groups B, C, D, and E was significantly lower than that of group A, and SEP latent period was significantly longer than that of group A (P<0.05), but no difference was found among groups B, C, D, and E at 7 days after remodeling and 1 week after transplantation (P>0.05). BBB score of groups C, D, and E was significantly higher than that of group B, and SEP latent period was significantly shorter than that of group B at 2, 5, and 8 weeks after transplantation (P<0.05);group E had higher BBB score and shorter SEP latent period than groups C and D at 5 and 8 weeks, showing significant difference (P<0.05). HE staining showed that there was a clear boundary between gray and white matter of spinal cord and regular arrangement of cells in group A;there were incomplete vascular morphology, irregular arrangement of cells, scar, and cysts in group B;there were obvious cell hyperplasia and smaller cysts in groups C, D, and E. BrdU positive cells were not observed in groups A and B, but could be found in groups C, D and E. Group E had more positive cells than groups C and D, and difference was significant (P<0.05). The number of glial fibrillary acidic protein positive cells of groups C, D, and E was significantly less than that of groups A and B, and it was significantly less in group E than groups C and D (P<0.05). The number of microtubule-associated protein 2 positive cells of groups C, D, and E was significantly more than that of groups A and B, and it was significantly more in group E than groups C and D (P<0.05). ConclusionThe NSCs transplantation combined with GDNF and ChABC could significantly promote the functional recovery of spinal cord injury, suggesting that GDNF and ChABC have a synergistic effect in the treatment of spinal cord injury.
ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.