The number of white blood cells in the leucorrhea microscopic image can indicate the severity of vaginal inflammation. At present, the detection of white blood cells in leucorrhea mainly relies on manual microscopy by medical experts, which is time-consuming, expensive and error-prone. In recent years, some studies have proposed to implement intelligent detection of leucorrhea white blood cells based on deep learning technology. However, such methods usually require manual labeling of a large number of samples as training sets, and the labeling cost is high. Therefore, this study proposes the use of deep active learning algorithms to achieve intelligent detection of white blood cells in leucorrhea microscopic images. In the active learning framework, a small number of labeled samples were firstly used as the basic training set, and a faster region convolutional neural network (Faster R-CNN) training detection model was performed. Then the most valuable samples were automatically selected for manual annotation, and the training set and the corresponding detection model were iteratively updated, which made the performance of the model continue to increase. The experimental results show that the deep active learning technology can obtain higher detection accuracy under less manual labeling samples, and the average precision of white blood cell detection could reach 90.6%, which meets the requirements of clinical routine examination.
In recent years, the pollution problem of particulate matter, especially PM2.5, is becoming more and more serious, which has attracted many people’s attention from all over the world. In this paper, a Kalman prediction model combined with cubic spline interpolation is proposed, which is applied to predict the concentration of PM2.5 in the micro-regional environment of campus, and to realize interpolation simulation diagram of concentration of PM2.5 and simulate the spatial distribution of PM2.5. The experiment data are based on the environmental information monitoring system which has been set up by our laboratory. And the predicted and actual values of PM2.5 concentration data have been checked by the way of Wilcoxon signed-rank test. We find that the value of bilateral progressive significance probability was 0.527, which is much greater than the significant level α = 0.05. The mean absolute error (MEA) of Kalman prediction model was 1.8 μg/m3, the average relative error (MER) was 6%, and the correlation coefficient R was 0.87. Thus, the Kalman prediction model has a better effect on the prediction of concentration of PM2.5 than those of the back propagation (BP) prediction and support vector machine (SVM) prediction. In addition, with the combination of Kalman prediction model and the spline interpolation method, the spatial distribution and local pollution characteristics of PM2.5 can be simulated.