west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "NF-E2-related factor 2" 8 results
  • Roles of PGC-1α and Nrf2 Synergistic Regulating γ-Glutamylcysteine Synthetase in Rats with Chronic Obstructive Pulmonary Disease

    Objective To explore the regulation of peroxisome proliferator-activated receptor γ coactivator 1α( PGC-1α) and NF-E2-related factor 2( Nrf2) on expression of γ-glutamylcysteine synthetase ( γ-GCS) , and their roles in chronic obstructive pulmonary disease( COPD) . Methods Twenty-four SD rats were randomly divided into a COPD group and a normal control group. COPD model was established by intratracheal instillation of lipopolysaccharide ( LPS) and daily exposure to cigarette smog in the COPD group. The lung function was measured and the pathological changes were observed. The protein and mRNA expressions of PGC-1α, Nrf2, and γ-GCS in lung tissue were measured by immunohistochemistry, Western blot, in site hybridization ( ISH) , and reverse transcription-polymerase chain reaction ( RT-PCR ) ,respectively. Results In the COPD group, the pulmonary function ( FEV0. 3, FEV0. 3 /FVC, PEF) damage and lung pathological changes were conformed as morphological characteristics of COPD. The mRNA of PGC-1α and Nrf2 expressed in lung tissues of two group rats in the region consistent with γ-GCS mRNA. The protein and mRNA expressions of PGC-1αand γ-GCS were markedly increased in the COPD group( all P lt;0. 05) ,and the protein expression of Nrf2 was obviously up-regulated ( P lt; 0. 01) , while Nrf2 mRNA had no significant difference between the two groups( P gt;0. 05 ) . Linear correlation analysis showed that the level ofPGC-1αprotein was positively correlated with the levels of Nrf2 protein and mRNA ( r = 0. 775, 0. 515, all P lt; 0. 01) , and the levels of PGC-1αand Nrf2 protein were positively correlated with the levels of γ-GCS protein ( r = 0. 531, 0. 575, all P lt; 0. 01) and mRNA ( r = 0. 616, 0. 634, all P lt; 0. 01) . Conclusions PGC-1α, which may serve as a co-activator of Nrf2, can up-regulate the expression of γ-GCS gene cooperatively with Nrf2 through a common pathway, which might involve in the oxidative and antioxidative mechanism in the pathogenesis of COPD.

    Release date:2016-09-14 11:25 Export PDF Favorites Scan
  • Effect of 5, 6-dihydrocyclopenta-1, 2-dithiole-3-thione on the expression of nuclear factor erythroid 2-related factor 2 and hemeoxygenase-1 in retina of type 2 diabetic rats

    ObjectiveTo observe the effect of phase Ⅱenzyme inducer 5, 6-dihydrocyclopenta 1, 2-dithiole-3-thione (CPDT) on nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signal pathway and oxidative stress in the retina of type 2 diabetic rats. MethodsThirty-five male Wistar rats were randomly divided into two group, normal group and model group. Model group were further randomly divided into two group, diabetic group and CPDT intervention group. There were 8 rats in the normal group and 27 rats in the model group. Diabetic group and CPDT intervention group were given high fat and high sugar diet for 2 months. After 12 hours of fasting, type 2 diabetic rat model was induced by intraperitoneal injection of low dose of streptozotocin. CPDT was added into the high fat and high sugar diets at 1 week after the diabetic model was established in the CPDT intervention group. Eight weeks after CPDT treatment, blood glucose, serum malondialdehyde (MDA), blood lipid, Nrf2 and hemeoxygenase-1 (HO-1) expression were evaluated. ResultsType 2 diabetic model was successfully established in 25 rats, the success rate was 92.6%.The level of blood lipid of diabetic group was higher than those of the normal group (FTC=65.866, FTG=25.441, FLDL-C=38.889; P=0.000). Blood glucose was significant different between all groups (χ2=25.812, P=0.000), and was significantly higher in diabetic group than that in normal group and CPDT intervention group. The serum MDA content was significant different between all groups (F=59.545, P=0.000), and was significantly higher in diabetic group than that in normal group (t=10.523, P=0.000) and CPDT intervention group (t=7.766, P=0.000). The mRNA level of retinal Nrf2 and HO-1 was significant different between all groups (FNrf2=19.503, PNrf2=0.000;FHO-1=9.737, PHO-1=0.001), and was higher in CPDT intervention group than the diabetic group (tNrf2=3.399, PNrf2=0.002;tHO-1=2.167, PHO-1=0.039). The protein level of retinal Nrf2 and HO-1 was significant different between all groups (FNrf2=112.823, FHO-1=119.361; P=0.000), and was higher in CPDT intervention group than the diabetic group (tNrf2=6.203, tHO-1=6.388; P=0.000). Immuno-staining showed that Nrf2 and HO-1 were mainly expressed in retinal ganglion cell layer, inner plexiform layer and inner nuclear layer, and were significant different between all groups (FNrf2=16.206, FHO-1=46.790; P=0.000). They also were higher in CPDT intervention group than the diabetic group (tNrf2=3.172, PNrf2=0.003;tHO-1=6.321, PHO-1=0.000), was higher in diabetic group than that in normal group (tNrf2=2.679, PNrf2=0.011;tHO-1=3.482, PHO-1=0.001). ConclusionCPDT may activate Nrf2/ARE pathway, induce Nrf2 and HO-1 expression, decrease serum MDA and blood glucose, and thus reduce oxidative stress injury in the retina of type 2 diabetic rats.

    Release date: Export PDF Favorites Scan
  • The influence of tert-butyl hydroquinone on retinal nuclear factor E2-related factor 2 and heme oxygenase-1 in type 2 diabetic rats

    ObjectiveTo observe the effect of tert-butyl hydroquinone (tBHQ) on type 2 diabetic rats retinal nuclear factor E2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Methods60 Sprague Dawley rats were randomly divided into normal control group (NC group, n=20) and model group (n=40). The rats in model group were intraperitoneal injected with streptozotocin (30 mg/kg) to establishing type 2 diabetic mellitus (DM). There were 35 rats successfully established and they were randomly divided into diabetic group (DM group, 17 rats) and tBHQ group (18 rats). The rats in tBHQ group were fed with high fat and sugar diet with 1% tBHQ. After 4 weeks and 12 weeks of tBHQ intervention, hematoxylin eosin staining of retinal sections, immunohistochemical staining and quantitative polymerase chain reaction (PCR) of Nrf2 and HO-1 were performed. ResultsIn tBHQ control, the retina of rats was normal and individual cells showed slightly edema at 4 weeks; the retinal structure of rats was clear and part of cells showed edema at 12 weeks. At 4 and 12 weeks, the expression of Nrf2 (t=3.115, 3.781) and HO-1 (t=3.485, 3.785) protein in DM group were higher than that in NC group (P < 0.05); the expression of Nrf2 (t=2.473, 2.576) and HO-1 (t=2.785, 2.879) protein in tBHQ group were higher than that in DM group (P < 0.05). In DM group, the expression of Nrf2 protein at 12 weeks was higher than that at 4 weeks (t=0.276, P < 0.05). In tBHQ group, the expression of Nrf2 (t=2.516) and HO-1 (t=2.776) protein at 12 weeks were higher than that at 4 weeks (P < 0.05). 4 and 12 weeks, the expression of Nrf2 (t=4.758, 4.285) and HO-1 (t=5.114, 4.514) mRNA in DM group were higher than that in NC group (P < 0.05); the expression of Nrf2 (t=5.133, 4.976) and HO-1 (t=4.758, 4.251) mRNA in tBHQ group were higher than that in DM group (P < 0.05). In DM gruop, the expression of Nrf2 protein at 12 weeks was higher than that at 4 weeks (t=5.114, P < 0.05). In tBHQ group, the expression of Nrf2 (t=4.292) and HO-1 (t=4.974) protein at 12 weeks were higher than that at 4 weeks (P < 0.05). ConclusiontBHQ intervention can increased the expression of Nrf2, HO-1 significantly in the retina of type 2 diabetic rats.

    Release date: Export PDF Favorites Scan
  • Effect of 5,6-dihydrocyclopenta-1, 2-dithiole-3-thione on Müller cells under the high glucose

    Objective To investigate the cellular viability and mitochondrial reactive oxygen species (ROS) production of the Müller cells under high glucose condition, and explore the protection role of the 5,6-dihydrocyclopenta-1, 2-dithiole-3-thione (CPDT) on Müller cells. Methods Müller cells from Sprague Dawley rats were divided into 5 groups randomly, including 25 mmol/L normal glucose group (group A) and 65 mmol/L high glucose group (group B). High glucose group with 45, 60, 70 μmol/L CPDT and cultured them 72 hour was set as group C, D and E. Water soluble tetrazolium salt (WST)-8 was used to measure the cellular viability. Flow cytometry was used to measure the active oxygen and apoptosis index. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), Bcl-2 and Bax protein were measured by Western blot. Results Compared with group A, the WST-8 showed that the viability of Müller cells apparently decreased in group B (t=39.59,P<0.05). Compared with the group B, the viability of Müller cells had changes in group C (t=0.97,P>0.05), but recovered in group D and E (t=−4.17, −7.52;P<0.05). Compared with group A, the FCM showed that the mitochondrial ROS levels was higher in group B (t=−30.99,P<0.05). Compared with group B, the mitochondrial ROS levels were decreased in group D (t=27.68,P<0.05). Compared with group A, Bax, Nrf2 and HO-1 increased (t=–11.03, –63.17, –11.44;P<0.05), while the bcl-2 decreased in group B (t=7.861,P<0.05). Compared with the group B, Nrf2, HO-1 and Bax decreased (t=15.11, 26.59, 6.27;P<0.05), while the bcl-2 increased in group D (t=−6.53,P<0.05). Conclusions Under the high glucose, CPDT may reduce the mitochondrial ROS levels and the expression of Nrf2, HO-1 and Bax protein of Müller cells. It may inhibit apoptosis through activating the Nrf2/HO-1 pathway and balancing of level of Bcl-2 protein and mitochondrial ROS.

    Release date:2017-05-15 12:38 Export PDF Favorites Scan
  • The effect of melatonin on retinal apoptosis in rats with ischemia-reperfusion injury

    Objective To observe the effect of melatonin (MT) on retinal apoptosis in rats with ischemia-reperfusion injury (RIRI). Methods A total of 54 male healthy Sprague-Dawley adult rats were randomly divided into the normal control (CON) group (6 rats), RIRI group (24 rats) and MT group (24 rats). The rats of RIRI and MT group were induced using suture-occluded methods to establish RIRI model. The rats of MT group were injected with MT in the left carotid artery 30 minutes after RIRI, and RIRI group was injected with the same amount of saline. On 6, 24 hours and 3, 7 days after RIRI, the morphological changes of retina were evaluated by hematoxylin and eosin (HE) staining; the effects of MT on retinal cell apoptosis and Nrf2, HO-1 proteins were examined by immunohistochemistry staining. The correlation between active Caspase-3 and Nrf2 protein, active Caspase-3 and HO-1 protein in MT group were analyzed by linear regression analysis. Results HE staining results showed that the morphology of retinal cells was regular and retinal cells were well arranged in the CON and MT group. In the RIRI group, both the thickness of inner retinal layer and the number of retinal ganglion cells (RGC) were decreased. On 6, 24 hours and 3, 7 days after RIRI, the thickness of inner retinal layer (F=16.710, 62.303, 68.389, 57.132; P<0.01) and RGC number (F=24.250, 11.624, 14.155, 32.442; P<0.05) in MT group were more than those in RIRI group. Immunohistochemistry staining results showed that less active Caspase-3+ cells were observed in MT group as compared with those in RIRI group at each time points (F=49.118, 134.173, 76.225, 18.385; P<0.01). There were more Nrf2+ (F=11.041, 31.480, 59.246, 6.740; P<0.05) and HO-1+ cells (F=128.993, 21.606, 51.349, 8.244; P<0.05) in MT group as compared with those in RIRI group at each time points. Linear regression analysis results showed that the difference of active Caspase-3+ cells were all linearly correlated with the Nrf2+ cells and HO-1+cells in the MT group (r2=0.810, 0.730; P<0.01). Conclusion MT could reduce retinal cell apoptosis in RIRI rats, and its mechanism may be associated with increased Nrf2 and HO-1 expression, reduced active Caspase-3 expression.

    Release date:2018-01-17 03:16 Export PDF Favorites Scan
  • Effect of tert-Butylhydroquinone on the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and phosphatidylinositol 3-kinase in high glucose cultured retinal Müller cells

    ObjectiveTo observe the effect of tert-Butylhydroquinone (tBHQ) on the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase (HO)-1 and phosphatidylinositol 3-kinase (PI3K) in high glucose cultured retinal Müller cells; and to investigate the anti-oxidative stress and anti-apoptotic effects of tBHQ.MethodsRetinal Müller cells were divided into normal glucose group (5.5 mmol/L, N group), high glucose group (45 mmol/L, HG group) and tBHQ intervention group (HG+tBHQ group). After retinal Müller cells were cultured with high glucose for 48 hours, the pretreatment with tBHQ (20 μmol/L) induced the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1. The Müller cells were identified by immunofluorescence staining. The expressions of Nrf2, HO-1, PI3K, B-cell lymphoma-2 (Bcl-2) and Bax were detected by Western blot and real-time fluorescence quantitative PCR. Flow cytometry was used to detect the apoptosis of retinal Müller cells in rats.ResultsMüller cytoplasm and nucleus GS showed strong positive, large cell body, abundant cytoplasm, uniform green fluorescence; nuclear DAPI staining round or oval, clear boundary. The expression of Nrf2 protein (t=4.114, P=0.006), HO-1 protein (t=9.275, P=0.000), Nrf2 mRNA (t=7.292, P=0.000) and HO-1 mRNA (t=15.014, P=0.000) in the HG group were higher than those in the N group. The expressions of Nrf2 protein (t=7.847, P=0.000) ,HO-1 protein (t=7.947, P=0.000), PI3K protein (t=5.397, P=0.002), Bcl-2 protein (t=6.825, P=0.000), Nrf2 mRNA (t=18.046, P=0.000), HO-1 mRNA (t=39.458, P=0.000), PI3K mRNA (t=4.979, P=0.003) and Bcl-2 mRNA (t=9.535, P=0.000) in the HG+tBHQ group were significantly higher than those in the HG group. The protein and mRNA expressions of Bax protein in the HG+tBHQ group were significantly lower than those in the HG group (t=14.998, 16.520; P=0.000, 0.000). Flow cytometry showed that the apoptosis rate of Müller cells in the HG group was significantly higher than that in the N group (t=39.905, P=0.000). The apoptosis rate of Müller cells in the HG+tBHQ group was significantly lower than that in the HG group (t=21.083, P=0.000).ConclusiontBHQ can inhibit the apoptosis of retinal Müller cells by up-regulating the expression of Nrf2, HO-1 and PI3K.

    Release date:2018-07-23 04:02 Export PDF Favorites Scan
  • Effects of probucol on high glucose-induced specificity protein 1/Keap1/Nrf2/glutamate-cysteine ligase catalytic in the cultured human müller cells

    ObjectiveTo observe the expression of probucol on high glucose-induced specificity protein 1(SP1), kelchlike ECH associated protein1 (Keap1), NF-E2-related factor 2 (Nrf2) and glutamate-cysteine ligase catalytic (GCLC) in the cultured human müller cells and preliminary study the antioxidation of the probucol on müller cells.MethodsPrimary cultured human müller cells were randomly divided into four groups: normoglycaemia group (5.5 mmol/L glucose), normoglycaemia with probucol group (5.5 mmol/L glucose+100 μmol/L probucol), hyperglycemia group (25.0 mmol/L glucose), hyperglycemia with probucol group (25.0 mmol/L glucose + 100 μmol/L probucol). Immunofluorescence staining was used to assess distribution of SP1, Keap1, Nrf2, GCLC in human Müller cells. SP1, Keap1, Nrf2 and GCLC messenger RNA (mRNA) expression was evaluated by quantitative real-time RT-PCR (qRT-PCR). Independent sample t test was used to compare the data between the two groups.ResultsAll müller cells expressed glutamine synthetase (>95%), which confirmed the cultured cells in vitro were the purification of generations of müller cells. The expressions of SP1, Keap1, Nrf2, and GCLC protein were positive in human müller cells. qRT-PCR indicated that SP1 (t=28.30, P<0.000), Keap1 (t=5.369, P=0.006), and Nrf2 (t=10.59, P=0.001) mRNA in the hyperglycemia group increased obviously compared with the normoglycaemia group; GCLC (t=4.633, P=0.010) mRNA in the hyperglycemia group decreased significantly compared with the normoglycaemia group. However, SP1 (t=12.60, P=0.000) and Keap1 (t=4.076, P=0.015) in the hyperglycemia with probucol group decreased significantly compared with the hyperglycemia group; Nrf2 (t=12.90, P=0.000) and GCLC (t=15.96, P<0.000) mRNA in the hyperglycemia with probucol group increased obviously compared with with the hyperglycemia group.ConclusionProbucol plays an antioxidant role by inhibiting the expression of SP1, Keap1 and up-regulating the expression of Nrf2, GCLC in müller cells induced by high glucose.

    Release date:2019-03-18 02:49 Export PDF Favorites Scan
  • Lentivirus-mediated polypyrimidine bundle binding protein-associated splicing factor inhibits retinal neovascularization in mice of oxygen-induced retinopathy

    ObjectiveTo investigate the inhibitory effect of lentivirus-mediated polypyrimidine bundle binding protein-associated splicing factor (PSF) on retinal neovascularization (RNV) in mice model of oxygen-induced retinopathy (OIR).MethodsOne hundred and twelve 5-day-old C57BL/6J mice were randomly divided into normal control group, simple OIR model group, OIR model + lentivirus empty vector treatment group (Vec group) and OIR model + PSF lentivirus treatment group (PSF group), with 16, 32, 32 and 32 mice, respectively. When the mice were 7 days old, the mice in the normal control group were fed in a routine environment, and the mice in the OIR model group, Vec group and PSF group were established OIR model. The mice in the Vec group and PSF group were given an intravitreal injection of 1 μl of lentiviral vector and PSF lentivirus (titer 1×1011 TU/ml) at the age of 12 days. No injection was performed in the normal control group and simple OIR group. RNV was evaluated by counting the number of pre-retinal neovascular cells and analysis of non-perfusion area by immunofluorescent staining of the mouse retina. Real-time quantitative PCR was applied to detect the mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Western blot analysis was applied to detect the protein expression of Nrf2, HO-1 and PSF. Results Of the normal control group, simple OIR model group, Vec group and PSF group, the number of pre-retinal neovascular cell nuclei were 0.00, 14.36±5.50, 15.67±4.96, 8.13±2.09, the non-perfusion area were 0.00%, (35.71±2.81)%, (36.57±4.53)%, (15.33±4.75)%, respectively. The differences of the number of pre-retinal neovascular cell nuclei and non-perfusion area among 4 groups were significant (F=24.87, 165.70; P<0.05). Compared with the normal control group, there were more pre-retinal neovascular cell nucleis and larger non-perfusion area in the simple OIR model group and Vec group (P<0.05). Compared with the simple OIR model group and Vec group, there were lower pre-retinal neovascular cell nucleis and smaller non-perfusion area in the PSF group (P<0.05). Real-time quantitative PCR and Western blot showed that the mRNA expression of Nrf2, HO-1 (F=53.66, 83.54) and protein expression of Nrf2, HO-1 and PSF (F=58.38, 52.69, 24.79) among 4 groups were significant (P<0.05). The mRNA expression of Nrf2, HO-1 and protein expression of Nrf2, HO-1 and PSF in the simple OIR model group and Vec group decreased significantly than those in the normal control group (P<0.05). The mRNA expression of Nrf2, HO-1 and protein expression of Nrf2, HO-1 and PSF in the PSF group were increased significantly than those in the simple OIR model group and Vec group (P<0.05). model group and Vec group (P<0.05).ConclusionIntravitreal injection of lentivirus-mediated PSF inhibits RNV in mice model of OIR possibly through up-regulating the expression of Nrf2 and HO-1.

    Release date:2020-02-18 09:28 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content