To quantitatively evaluate the upper-limb spasticity of stroke patients in recovery stage, the relationship between surface electromyography (sEMG) characteristic indexes from biceps brachii and triceps brachii and the spasticity were explored, which provides the electrophysiological basis for clinical rehabilitation. Ten patients with spasticity after stroke were selected to be estimated by modified Ashworth (MAS) assessment and a passive elbow sinusoidal motion experiment was carried out. At the same time, the sEMG of biceps and triceps were recorded. The results shows that the reflex electromyographic threshold could reflect the physiological mechanism of spasticity and had significant correlation with MAS scale which showed that sEMG could be prosperous for the clinical quantitative evaluation of spasticity of stroke patients.
For the questions of deeply researching abnormal neuromuscular coupling and better evaluating motor function of stroke patients with motor dysfunction, an effective intermuscular coherence analysis method and index are studied to explore the neuromuscular oscillation and the pathomechanism of motor dysfunction, based on which an assessment standard of muscle function is established. Firstly, the contrastive analysis about the intermuscular coherence of antagonistic muscle of affected and intact upper limbs of stroke patients was conducted. Secondly, a significant indicator of Fisher's Z-transformed coherence significant indicator was defined to quantitatively describe the coupling differences in certain functional frequency domain between surface electromyogram (sEMG) of affected and intact sides. Further more, the relationship between intermuscular coherence and motor task was studied. Through the analysis of intermuscular coherence during elbow flexion-extension of affected and intact sides, we found that the intermuscular coherence was associated with motor task and the stroke patients exhibited significantly lower beta-band intermuscular coherence in performing the task with their affected upper limbs. More conclusion can be drawn that beta-band intermuscular coherence has been found concerned with Fugle-Meyer scale, which indicates that beta-band intermuscular coherence could be an index assisting in evaluating motor function of patients.