This study aims to explore the effects of alginate-poly ornithine-alginate (A-PLO-A) and barium alginate-poly ornithine-alginate (B-PLO-A) microcapsules as cells carriers during implantation. Mice hepatocytes coated in A-PLO-A and B-PLO-A microcapsules were implanted into rats with acute liver failure caused by intraperitoneal injection of D-galactosamine. The rat survival rate, liver cell growth, proliferation and metabolism within the microcapsules were investigated, as well as its effect on the improvement of rat acute liver failure. The influence of A-PLO-A-free microcapsules, B-PLO-A-free microcapsules, isolated liver cells, A-PLO-A microcapsule-coated and B-PLO-A microcapsule-coated liver cells was studied. It was found that the chemical-free microcapsules showed no positive effect on the rats with liver failures, with a death rate of 100% in both groups 3 days after the implantation. The ALT, AST and ALB levels were all improved in the isolated liver cell group, the A-PLO-A microcapsule-coated and the B-PLO-A microcapsule-coated groups. The survival rate of both microcapsule-coated liver cell groups was significantly higher than that of the chemical-free microcapsule group and the isolated liver cells group. The microcapsules were retrieved after 4 weeks' implantation, which were observed to be smooth with no cells attaching to the surface. No apparent fibrosis was observed. This research demonstrated the physical stability and the biocompatibility of the PLO-based alginate microcapsules and therefore they could be used as liver cell carriers during implantation.
The aim of this study was to establish an assessment method for determiningα-Gal(α-1, 3-galactosyle) epitopes contained in animal tissue or animal tissue-derived biological materials with ELISA inhibition assay. Firstly, a 96 well plate was coated with Galα-1, 3-Gal/bovine serum albumin (BSA) as a solid phase antigen and meanwhile, the anti-α-Gal M86 was used to react withα-Gal antigens which contained in the test materials. Then, the residual antibodies (M86) in the supernatant of M86-Gal reaction mixture were measured using ELISA inhibition assay by theα-Gal coating plate. The inhibition curve of the ELISA inhibition assay, the R2=0.999, was well established. Checking using bothα-Gal positive materials (rat liver tissues) andα-Gal negative materials (human placenta tissues) showed a good sensitivity and specificity. Based on the presently established method, theα-Gal expression profile of rat tissues, decellular animal tissue-derived biological materials and porcine dermal before and after decellular treatment were determined. The M86 ELISA inhibition assay method, which can quantitatively determine theα-Gal antigens contained in animal tissues or animal tissue-derived biomaterials, was refined. This M86 specific antibody based-ELISA inhibition assay established in the present study has good sensitivity and specificity, and could be a useful method for determining remnantα-1, 3Gal antigens in animal tissue-derived biomaterials.