ObjectiveTo review the development and applications of hypoxia-inducible factor 1α (HIF-1α) in the strategy of tissue engineered angiogenesis and osteogenesis. MethodThe literature about HIF-1α in tissue engineering technology was reviewed, analyzed, and summarized. ResultsHIF-1α plays a key role in angiogenic-osteogenic coupling, and as an upstream regulator, HIF-1α can regulate the expressions of its target genes related with angiogenesis and osteogenesis. In addition, HIF-1α not only can control and improve the angiogenesis, but also has important significance in proliferation and differentiation of seed cells, especially stem cells, which is the foundation for bone healing. ConclusionsWith the development of tissue engineering technology, the problems in the applications of HIF-1α, such as the effective dose of targeting controlled-release, pro-inflammatory effect, and carcinogenicity, will be explored and solved in the future, so it can be used better in clinical.