west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone scaffold" 2 results
  • Influencing Factors on the Properties of Bone Scaffolds and Their Manufacturing Techniques

    To serve as carriers of cells and bioactive molecules, three-dimensional scaffolds play a key role in bone defect repair. The chemical component and microstructure of the scaffold can affect the mechanical properties and seed cells. A variety of fabrication techniques have been used in producing scaffolds, some made random porous structure, some created well-designed structure using rapid prototyping methods, and others prepared bio-derived materials as scaffolds. However, scaffolds may vary in their inner structure, mechanical properties and repairing efficiency as well because of different manufacturing methods. In this review, we overview the main achievements concerning the effects of material and microstructure on the mechanical performance, seed cells and defect repair of bone scaffolds.

    Release date: Export PDF Favorites Scan
  • Research progress in influence of microstructure on performance of triply-periodic minimal surface bone scaffolds

    Objective To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds. Methods The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized. Results The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold’s biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain. Conclusion The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content