Objective To study the biological characteristic of rabbit bone marrow mesenchymal stem cells (BMSCs) double-labeled by PKH26 and BrdU in vitro, and to construct tissue engineered cardiac patch in vitro. Methods The BMSCs were harvested from 6-month-old New Zealand rabbits and labeled with PKH26 and BrdU. The growth and fluorescent intensitywere observed by inverted phase contrast microscope, fluorescent microscope, flow cytometry, and MTT detection. Thecharacteristics of double-labeled BMSCs differentiating into osteoblasts and adipocytes, respectively, in vitro were identified by alkal ine phosphatase (ALP) staining, Al izarin red staining, Oil red O staining, immunocytochemical technique of collagen type I, and osteocalcin expression. The labeled BMSCs were seeded on the small intestinal submucosa (SIS) and co-cultured for 5-7 days to construct tissue engineered cardiac patch. The patches were tested by inverted phase contrast microscope, fluorescent microscope, scanning electron microscope, and HE staining to observe the cell prol iferation. Results The double-labeled cells grew well and showed red fluorescence. There was no significant difference in the growth characteristic between the labeled and unlabeled cells. There was no significant difference in the expression of stem cell specific surface antigen between before lebel ing and after lebel ing. After osteogenic induction of labeled BMSCs, ALP staining and Al izarin red staining were positive, and the cells expressed collagen type I and osteocalcin. After adipocytes induction, l ipid droplets could be observed in cytoplasm by Oil red O staining. After the co-culture in vitro for 5-7 days, the double-labeled cells grew well, showing a multi-layer cellular structure on the surface of SIS. Conclusion Rabbit BMSCs can be double-labeled with PKH26 and BrdU stably. The labeled cells still have the potential of self-renewal abil ity and multipotent differentiation abil ity; tissue engineered cardiac patch can be constructed by co-culturing labeled BMSCs and SIS in vitro.
ObjectiveTo investigate the feasibility of animal model of the reconstruction of right ventricular outflow tract in rats.MethodsA total of 15 female Sprague-Dawley (SD) rats underwent right ventricular outflow tract reconstruction surgery. Before the operation, the collagen scaffolds were treated with g 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride chemistry (EDC), and seeded with human bone marrow stem cells (h-MSCs). Three days after the surgery, 3 rats were randomly sacrificed to evaluate the transmural resection of right ventricular outflow tract. One or 3 months later, other 3 rats at each timepoint were sacrificed, stained with Masson’s Trichrome to observe the degradation of scaffold. Furthermore, 4 weeks after the surgery, 4 rats were sacrificed and the hearts were sliced. Anti-human mitochondria staining was used to identify the survival of seeding cells.ResultsThe transmural resection of right ventricular outflow tract was feasible in rats at an acceptable mortality (13.3%). After EDC treatment, the degradation rate of collagen scaffold was extended greatly. The seeding cells were detected by anti-mitochandria immunofluorescent staining in all patches 4 weeks after the operation.ConclusionRat model of right ventricular outflow tract reconstruction could be a stable, reliable and economical screening model for engineered heart tissue research.
ObjectiveTo provide experimental data and theoretical support for further studying the maturity of cardiac patches in other in vitro experiments and the safety in other in vivo animal experiments, through standard chemically defined and small molecule-based induction protocol (CDM3) for promoting the differentiation of human induced pluripotent stem cells (hiPSCs) into myocardium, and preliminarily preparing cardiac patches. MethodsAfter resuscitation, culture and identification of hiPSCs, they were inoculated on the matrigel-coated polycaprolactone (PCL). After 24 hours, the cell growth was observed by DAPI fluorescence under a fluorescence microscope, and the stemness of hiPSCs was identified by OCT4 fluorescence. After fixation, electron microscope scanning was performed to observe the cell morphology on the surface of the patch. On the 1st, 3rd, 5th, and 7th days of culture, the cell viability was determined by CCK-8 method, and the growth curve was drawn to observe the cell growth and proliferation. After co-cultured with matrigel-coated PCL for 24 hours, hiPSCs were divided into a control group and a CDM3 group, and continued to culture for 6 days. On the 8th day, the cell growth was observed by DAPI fluorescence under a fluorescence microscope, and hiPSCs stemness was identified by OCT4 fluorescence, and cTnT and α-actin for cardiomyocyte marker identification. ResultsImmunofluorescence of hiPSCs co-cultured with matrigel-coated PCL for 24 hours showed that OCT4 emitted green fluorescence, and hiPSCs remained stemness on matrigel-coated PCL scaffolds. DAPI emitted blue fluorescence: cells grew clonally with uniform cell morphology. Scanning electron microscope showed that hiPSCs adhered and grew on matrigel-coated PCL, the cell outline was clearly visible, and the morphology was normal. The cell viability assay by CCK-8 method showed that hiPSCs proliferated and grew on PCL scaffolds coated with matrigel. After 6 days of culture in the control group and the CDM3 group, immunofluorescence showed that the hiPSCs in the control group highly expressed the stem cell stemness marker OCT4, but did not express the cardiac markers cTnT and α-actin. The CDM3 group obviously expressed the cardiac markers cTnT and α-actin, but did not express the stem cell stemness marker OCT4. ConclusionhiPSCs can proliferate and grow on matrigel-coated PCL. Under the influence of CDM3, hiPSCs can be differentiated into cardiomyocyte-like cells, and the preliminary preparation of cardiac patch can provide a better treatment method for further clinical treatment of cardiac infarction.