west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "cell activation" 3 results
  • Activation of Adenosine 2A Receptor Inhibiting Rat T Cell Function in Vitro

    Objective To study the effects of adenosine 2A receptor activation on activation, proliferation, and toxicity of T lymphocytes stimulated by phytohemagglutinin (PHA) in vitro. Methods A model of activated T cells was established by stimulating the cells with PHA. Those T cells were treated with different concentrations of adenosine 2A receptors agonist (0.01 μmol/L, 0.1 μmol/L, 1 μmol/L, and 10 μmol/L CGS21680). The expressions of CD69, CD25 and proliferation of T cells were measured by fluorescent antibody stain and flow cytometry. ELISA method was used to detect IL-2 and INF-γ levels. Results All concentrations of CGS21680 significantly inhibited the expressions of CD25 and CD69 on PHA-stimulated T cells surface and proliferation of T cells (Plt;0.05, Plt;0.01). IL-2 and INF-γ secreted by T cells were significantly suppressed, too (Plt;0.01). Conclusion Activation of adenosine 2A receptor can effectively inhibit the activation, proliferation, and toxicity of T cells in vitro.

    Release date:2016-09-08 10:50 Export PDF Favorites Scan
  • Research progress of pancreas stellate cells in pancreas fibrosis

    Objective To review research progress of pancreas stellate cells in pancreas fibrosis and understand characteristics and activation of pancreas stellate cells and its mechanism on pancreas fibrosis. Method The relevant literatures about pancreas stellate cells and its studies in pancreas fibrosis were reviewed. Results The activation of pancreatic stellate cell is associated with fibrosis of pancreatitis and end stage of pancreas transplantation, but its effect and regulation mechanisms for the extracelluar and intracellular molecular network need to be further investigated. Conclusion Elucidation of activation of pancreas stellate cells will facilitate understanding of pancreas fibrosis and searching new target in treatment of pancreas fibrosis.

    Release date:2017-05-04 02:26 Export PDF Favorites Scan
  • Role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α in inhibiting aortic valve interstitial cell activation

    Objective To investigate the role and mechanism of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in the activation of aortic valve interstitial cells (AVICs) in aortic stenosis. Methods Isolating primary AVICs and stimulating their activation with transforming growth factor β1 (TGF-β1, 30 ng/mL), the expression of PGC-1α was detected. The activation of AVICs induced by TGF-β1 was observed after overexpression of PGC-1α by adenovirus or inhibition of PGC-1α function by GW9662. The possible downstream molecular mechanism of PGC-1α in AVICs activation was screened. Finally, the phenotype was further verified in primary human AVICs. Results The expression of PGC-1α decreased after the activation of AVICs induced by TGF-β1 (control group: 1.00±0.18; 24 h: 0.31±0.10; 48 h: 0.32±0.06; 72 h: 0.20±0.07; P<0.05). Specific overexpression of PGC-1α by adenovirus inhibited the activation of AVICs induced by TGF-β1 stimulation (periostin: 3.17±0.64 vs. 1.45±0.54, P<0.05; α-smooth muscle actin: 0.77±0.11 vs. 0.28±0.06, P<0.05). On the contrary, inhibition of PGC-1α function by GW9662 promoted the activation of AVICs (periostin: 2.20±0.68 vs. 7.99±2.50, P<0.05). Subsequently, it was found that PGC-1α might inhibit the activation of AVICs through downregulating the expression of calcium/calmodulin-dependent protein kinase (CAMK1δ) (0.97±0.04 vs. 0.74±0.11, P<0.05), and downregulating the expression of CAMK1δ alleviated the activation of AVICs (periostin: 1.76±0.11 vs. 0.99±0.20, P<0.05). The possible mechanism was that the activation of mammalian target of rapamycin (mTOR) signaling pathway was inhibited by reducing the accumulation of reactive oxygen species (ROS) (778.3±139.4 vs. 159.3±43.2, P<0.05). Finally, the protective effect of PGC-1α overexpression was verified in the activated phenotype of human AVICs (periostin: 2.73±0.53 vs. 1.63±0.14, P<0.05; connective tissue growth factor: 1.27±0.04 vs. 0.48±0.09, P<0.05). Conclusions The expression of PGC-1α significantly decreases during the activation of AVICs induced by TGF-β1. The overexpression of PGC-1α significantly inhibites the activation of AVICs, suggesting that PGC-1α plays a protective role in the activation of AVICs. The possible mechanism is that PGC-1α can inhibit the activation of CAMK1δ-ROS-mTOR pathway. In conclusion, interventions based on PGC-1α expression levels are new potential therapeutic targets for aortic stenosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content