Objective To prepare carboxymethylchitin and study its properties. Methods Chitin was prepared from fresh shrimp shells and then carboxymethylchitin was prepared by the methods of alkalization and etherification as well as by the purification technique. The deacetylation degree of carboxymethylchitin was determined by the doublejump potentiometric titration method; the substitution degree was determined by the element analysis method; the carboxymethyl substitution position was analyzed by the Fourier transform infrared spectroscopy apparatus and the nuclear magnetic resonance spectroscopy apparatus; the relative molecular weight and its polydispersity were determined by the gel permeation chromatography with the multiple angle laser light scattering detection; the biological properties were tested according to the GB/T 16886 biological evaluation on medical devices. Results Carboxymethylchitin could be prepared by alkalization and etherification from chitin which was prepared from fresh shrimp shells by decalcification and deproteinization. The deacetylation degree of carboxymethylchitin was 13.76% according to the doublejump potentiometric titration; the degrees of deacetylation and substitution were 14.53% and 1.239 0 respectively according to the element analysis. The IR spectrum showed that the substitutive position was N,O-substitution, and the 13C-NMR spectrum showed that substitutive position of carboxymethylchitin was mostly primary substitution of 6-OH, and according to the substitutive proportion, the substitutive turns were in the following decreasing order: 6-OH, NH2, and 3-OH. The weightaveraged and the numberaveraged molecular weights and polydispersity were 6.25×105, 5.60×105 and 1.22, respectively. The results from the biological property test showed that carboxymethylchitin was a biomaterial that was sterile, pyrogen-free, acute toxicity-free, cytotoxicity-free, intracutaneous irritationfree, skin sensitization-free and biomaterial genotoxicity-free, with no side or adverse effects on the related tissues after implantation into the human body. Conclusion Carboxymethylchitin prepared from chitin by alkalization and etherification is amacromolecule biomaterial that has a low degree of deacetylation, a high degreeof substitution, and a good biocompatibility.
Objective To prepare nano polypyrrole (PPy)/chitin composite membrane and observe their biocompatibility. Methods The nano PPy was synthesized by microemulsion polymerization, blended with chitosan and then formed membranes. The membranes were then modified by acetylation to get the experimental membranes (nano PPy/chitin composite membranes, group A). The chitosan membranes (group B) and chitin ones (group C) modified by acetylation acted as control. Scanning electron microscopy and FT-IR spectra were used to identify the nano PPy and the membranes of each group. And the conductivity of membranes of each group was measured. Schwann cells were co-cultured in vitro with each group membranes to observe the biocompatibility by inverted microscope observing, living cell staining, cell counting, and immunofluorescence staining. The lysozyme solution was used to evaluate the degradation of the membranes in vitro. Results The FT-IR spectra showed that the characteristic vibrational absorption peaks of C=C from nano PPy appeared at 1 543.4 cm–1 and 1 458.4 cm–1. Scanning electron microscopy observation revealed that the size of nano PPy particles was about 100-200 nm. The nano PPy particles were synthesized. It was successful to turn chitosan to chitin by the acetylation, which was investigated by FT-IR analysis of membranes in groups A and C. The characteristic peaks of the amide Ⅱ band around 1 562 cm–1 appeared after acetylated modification. Conductivity test showed that the conductivity of membranes in group A was about (1.259 2±0.005 7)×10–3 S/cm, while the conductivity of the membranes in groups B and C was not detected. The nano PPy particles uniformly distributed on the surface of membranes in group A were observed by scanning electron microscope; the membranes in control groups were smooth. As a result, the nano PPy/chitin composite membranes with electrical conductivity were obtained. The cultured Schwann cells were found to survive with good function by fluorescein diacetate live cell staining, soluble protein-100 immunofluorescence staining, and inverted microscope observing. The cell counting showed that the proliferation of Schwann cells after 2 days and 4 days of group A was more than that of the two control groups, and the differences were significant (P<0.05). It indicated that the nano PPy/chitin composite membranes had better ability of adhesion and proliferation than those of chitosan and chitin membranes. The degradation of membranesin vitro showed that the degradation rates of membranes in groups A and C were significantly higher than those in group B at all time points (P<0.05). In a word, the degradation performance of the membranes modified by acetylation was better than that of chitosan membranes under the same condition. Conclusion The nano PPy and chitosan can be blended and modified by acetylation successfully. Nano PPy/chitin composite membranes had electrical conductivity, degradability, and good biocompatibility in vitro.