Objective To review the progress and application of peripheral nervous microelectrode. Methods The recent articles on peripheral nervous microelectrode were extensively reviewed. The classification, the progress of the peripheral nervous microelectrode and its utilizable prospect in the control of electronic prosthesis were summarized. Results The microelectrodes had favorable functions of selective stimulation and recording. It provided an information transmitting interface between the electric prosthesis and peripheral nerves. Conclusion Peripheral nervous signal is a feasible signal source to control electronic prosthesis.
ObjectiveThe purpose of this study was to compare the value of SEEG and subdural cortical electrodes monitoring in preoperative evaluation of epileptogenic zone. MethodsFeatures of patients using SEEG (48 cases) and subdural cortical electrodes monitoring (52 cases) to evaluate the epileptogenic zone were collected from June 2011 to June 2015. And the evaluation results, surgical effects and complications were compared. ResultsThere was no significant difference between SEEG and subdural cortical electrodes monitoring in identifying the epileptogenic zone or taking epileptic surgery, but SEEG could monitor multifocal and bilateral epileptogenic zone. And there was no significant difference in postoperative seizure control and intelligence improvement (P > 0.05). The total complication rate of SEEG was lower than subdural cortical electrodes monitoring, especially in hemorrhage and infection (P < 0.05). ConclusionsThere was no difference among SEEG and subdural cortical electrodes monitoring in surgical results, but SEEG with less hemorrhagic and infectious risks. SEEG is a safe and effective intracranial monitoring method, which can be widely used.
ObjectiveTo evaluate the application of stereotactic electrode implantation on precise epileptogenic zone localization. MethodRetrospectively studied 140 patients with drug-resist epilepsy from March 2012 to June 2015, who undergone a procedure of intracranial stereotactic electrode for localized epileptogenic zone. ResultsIn 140 patients who underwent the ROSA navigated implantation of intracranial electrode, 109 are unilateral implantation, 31 are bilateral; 3 patients experienced an intracranial hematoma caused by the implantation. Preserved time of electrodes, on average, 8.4days (range 2~35 days); Obseved clinical seizures, on average, 10.8 times per pt (range 0~98 times); There were no cerebrospinal fluid leak, intracranial hematoma, electrodes fracture or patient death, except 2 pt's scalp infection (1.43%, scalp infection rate); 131 pts' seizure onset area was precisely localized; 71 pts underwent SEEG-guide resections and were followed up for more than 6 months. In the group of 71 resection pts, 56 pts were reached Engel I class, 2 were Engel Ⅱ, 3 was Engel Ⅲ and 10 were Engel IV class. ConclusionTo intractable epilepsy, when non-invasive assessments can't find the epileptogenic foci, intracranial electrode implantation combined with long-term VEEG is an effective method to localize the epileptogenic foci, especially the ROSA navigated stereotactic electrode implantation, which is a micro-invasive, short-time, less-complication, safe-guaranteed, and precise technique.
We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4×4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0.004℃ with practical stimulation current. When the distance between the electrode contacts was changed from 130 μm to 520 μm, the temperature was reduced by about 0.006℃. When the contact radius was doubled from 130 μm to 260 μm, the temperature decrease was about 0.005℃. It was shown that there were little temperature changes in the retina with a 4×4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.
Micro- and integrated biosensor provides a powerful means for cell electrophysiology research. The technology of electroplating platinum black on the electrode can uprate signal-to-noise ratio and sensitivity of the sensor. For quantifying analysis of the processing method of electroplating process, this paper proposes a grid search algorithm based on the Monte-Carlo model. The paper also puts forward the operational optimization strategy, which can rapidly implement the process of large-scale nanoparticles with different particle size of dispersion (20-200 nm) attaching to the electrode and shortening a simulation time from average 20 hours to 0.5 hour when the test number is 10 and electrode radius is 100 μm. When the nanoparticle was in a single layer or multiple layers, the treatment uniformity and attachment rate was analyzed by using the grid search algorithm with different sizes and shapes of electrode. Simulation results showed that under ideal conditions, when the electrode radius is less than 100 μm, with the electrode size increasing, it has an obvious effect for the effective attachment and the homogeneity of nanoparticle, which is advantageous to the quantitative evaluation of electrode array's repeatability. Under the condition of the same electrode area, the best attachment is on the circular electrode compared to the attachments on the square and rectangular ones.
The growing rate of public health problem for increasing number of people afflicted with poor sleep quality suggests the importance of developing portable sleep electroencephalogram (EEG) monitoring systems. The system could record the overnight EEG signal, classify sleep stages automatically, and grade the sleep quality. We in our laboratory collected the signals in an easy way using a single channel with three electrodes which were placed in frontal position in case of the electrode drop-off during sleep. For a test, either silver disc electrodes or disposable medical electrocardiographic electrodes were used. Sleep EEG recorded by the two types of electrodes was compared to each other so as to find out which type was more suitable. Two algorithms were used for sleep EEG processing, i.e. amplitude-integrated EEG (aEEG) algorithm and sample entropy algorithm. Results showed that both algorithms could perform sleep stage classification and quality evaluation automatically. The present designed system could be used to monitor overnight sleep and provide quantitative evaluation.
A digital system for bioimpedance and electrical impedance tomography (EIT) measurement controlled by an ATmega16 microcontroller was constructed in our laboratory. There are eight digital electrodes using AD5933 to measure the impedance of the targets, and the data is transmitted to the computer wirelessly through nRF24L01. The structure of the system, circuit design, system testing, vitro measurements of animals' tissues and electrical impedance tomography are introduced specifically in this paper. The experimental results showed that the system relative error was 0.42%, and the signal noise ratio was 76.3 dB. The system not only can be used to measure the impedance by any two electrodes within the frequency of 1-100 kHz in a sweep scanning, but also can reconstruct the images of EIT. The animal experiments showed that the data was valid and plots were fitting with Cole-Cole theory. The testing verified the feasibility and effectiveness of the system. The images reconstructed of a salt-water tank are satisfactory and match with the actual distribution of the tank. The system improves the effectiveness of the front-end measuring signal and the stability of the system greatly.
The effect of deep brain stimulation (DBS) surgery treatment for Parkinson's disease is determined by the accuracy of the electrodes placement and localization. The subthalamic nuclei (STN) as the implant target is small and has no clear boundary on the images. In addition, the intra-operative magnetic resonance images (MRI) have such a low resolution that the artifacts of the electrodes impact the observation. The three-dimensional (3D) visualization of STN and other nuclei nearby is able to provide the surgeons with direct and accurate localizing information. In this study, pre- and intra-operative MRIs of the Parkinson's disease patients were used to realize the 3D visualization. After making a co-registration between the high-resolution pre-operative MRIs and the low-resolution intra-operative MRIs, we normalized the MRIs into a standard atlas space. We used a special threshold mask to search the lead trajectories in each axial slice. After checking the location of the electrode contacts with the coronal MRIs of the patients, we reconstructed the whole lead trajectories. Then the STN and other nuclei nearby in the standard atlas space were visualized with the grey images of the standard atlas, accomplishing the lead reconstruction and nerve nuclei visualization near STN of all patients. This study provides intuitive and quantitative information to identify the accuracy of the DBS electrode implantation, which could help decide the post-operative programming setting.
In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.
In order to accurately localize the image coordinates and serial numbers of intraoperative subdural matrix electrodes, a matrix electrode localization algorithm for image processing is proposed in this paper. Firstly, by using point-by-point extended electrode location algorithm, the electrode is expanded point-by-point vertically and horizontally, and the initial coordinates and serial numbers of each electrode are determined. Secondly, the single electrode coordinate region extraction algorithm is used to determine the best coordinates of each electrode, so that the image coordinates and serial numbers of all electrodes are determined point-by-point. The results show that the positioning accuracy of electrode serial number is 100%, and the electrode coordinate positioning error is less than 2 mm. The algorithms in this paper can accurately localize the image coordinates and the serial numbers of a matrix electrode arranged in an arc, which could aid drawing of cortical function mapping, and achieve precise positioning of brain functional areas, so that it can be widely used in neuroscience research and clinical application based on electrocorticogram analysis.