The lower extremity exoskeleton robot is a wearable device designed to help people suffering from a walking disorder to regain the power of the legs and joints to achieve standing and walking functions. Compared with traditional robots that include rigid mechanisms, lower extremity exoskeleton robots with compliant characteristics can store and release energy in passive elastic elements while minimizing the reaction force due to impact, so it can improve the safety of human-robot interaction. This paper reviews the compliant characteristics of lower extremity exoskeleton robots from the aspects of compliant drive and compliant joint, and introduces the augmentation, assistive, rehabilitation lower extremity exoskeleton robots. It also prospect the future development trend of lower extremity exoskeleton robots.
With the breakthroughs of digitization, artificial intelligence and other technologies and the gradual expansion of application fields, more and more studies have been conducted on the application of digital intelligence technologies such as exoskeleton robots, brain-computer interface, and spinal cord neuromodulation to improve or compensate physical function after spinal cord injury (SCI) and improve self-care ability and quality of life of patients with SCI. The development of digital intelligent rehabilitation technology provides a new application platform for the functional reconstruction after SCI, and the digital and intelligentized rehabilitation technology has broad application prospects in the clinical rehabilitation treatment after SCI. This article elaborates on the current status of exoskeleton robots, brain-computer interface technology, and spinal cord neuromodulation technology for functional recovery after SCI.
Lower limb exoskeleton rehabilitation robots are used to improve or restore the walking and movement ability of people with lower limb movement disorders. However, the required functions for patients differ based on various diseases. For example, patients with weak muscle strength require power assistance, patients with spinal cord injuries require motion compensation, patients with gait abnormalities require gait correction, and patients with strokes require neural rehabilitation. To design a more targeted lower limb exoskeleton rehabilitation robot for different diseases, this article summarised and compared existing lower limb exoskeleton rehabilitation robots according to their main functions and the characteristics and rehabilitation needs of various lower limb movement disorders. The correlations between the functions of existing devices and diseases were summarised to provide certain references for the development of new lower limb exoskeleton rehabilitation robots.