west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "schizophrenia" 8 results
  • A Study of Cognitive Functions in People at High Risk for Schizophrenia

    Objective To investigate the cognitive functions in people at high risk for schizophrenia.Methods Two hundred and twenty-two people at high risk for schizophrenia and 331 normal controls were assessed with 14 neuropsychological tests. Results The results of some neuropsychological tests in people at high risk for schizophrenia were worse than those in the normal controls. These tests included information, arithmetic, digital symbol, block design, logical memory, visual memory, Stroop test, verbal fluency, tower of Hanoi, WCST and CPT (Plt;0.01). The time for trail making test A in was longer in the group at high risk for schizophrenia than in the control group (Plt;0.05).Conclusion People at high risk for schizophrenia have general cognitive deficits. Attention and executive function may represent the genetic endophenotype for schizophrenia.

    Release date:2016-09-07 02:18 Export PDF Favorites Scan
  • Automatic classification of first-episode, drug-naive schizophrenia with multi-modal magnetic resonance imaging

    A great number of studies have demonstrated the structural and functional abnormalities in chronic schizophrenia (SZ) patients. However, few studies analyzed the differences between first-episode, drug-naive SZ (FESZ) patients and normal controls (NCs). In this study, we recruited 44 FESZ patients and 56 NCs, and acquired their multi-modal magnetic resonance imaging (MRI) data, including structural and resting-state functional MRI data. We calculated gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low frequency fluctuation (ALFF), and degree centrality (DC) of 90 brain regions, basing on an automated anatomical labeling (AAL) atlas. We then applied these features into support vector machine (SVM) combined with recursive feature elimination (RFE) to discriminate FESZ patients from NCs. Our results showed that the classifier using the combination of ReHo and ALFF as input features achieved the best performance (an accuracy of 96.97%). Moreover, the most discriminative features for classification were predominantly located in the frontal lobe. Our findings may provide potential information for understanding the neuropathological mechanism of SZ and facilitate the development of biomarkers for computer-aided diagnosis of SZ patients.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Degree centrality of the functional network in schizophrenia patients

    The aim of the present study was to investigate the alternations of brain functional networks at resting state in the schizophrenia (SCH) patients using voxel-wise degree centrality (DC) method. The resting-state functional magnetic resonance imaging (rfMRI) data were collected from 41 SCH patients and 41 matched healthy control subjects and then analyzed by voxel-wise DC method. The DC maps between the patient group and the control group were compared using by two sample t test. The correlation analysis was also performed between DC values and clinical symptom and illness duration in SCH group. Results showed that compared with the control group, SCH patients exhibited significantly decreased DC value in primary sensorimotor network, and increased DC value in executive control network. In addition, DC value of the regions with obvious differences between the two groups significantly correlated to Positive and Negative Syndrome Scale (PANSS) scores and illness duration of SCH patients. The study showed the abnormal functional integration in primary sensorimotor network and executive control network in SCH patients.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Resting-state electroencephalogram classification of patients with schizophrenia or depression

    The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • Research on electroencephalogram specifics in patients with schizophrenia under cognitive load

    Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Single-modal neuroimaging computer aided diagnosis for schizophrenia based on ensemble learning using privileged information

    Neuroimaging technologies have been applied to the diagnosis of schizophrenia. In order to improve the performance of the single-modal neuroimaging-based computer-aided diagnosis (CAD) for schizophrenia, an ensemble learning algorithm based on learning using privileged information (LUPI) was proposed in this work. Specifically, the extreme learning machine based auto-encoder (ELM-AE) was first adopted to learn new feature representation for the single-modal neuroimaging data. Random project algorithm was then performed on the learned high-dimensional features to generate several new feature subspaces. After that, multiple feature pairs were built among these subspaces to work as source domain and target domain, respectively, which were used to train multiple support vector machine plus (SVM+) classifier. Finally, a strong classifier is learned by combining these SVM+ classifiers for classification. The proposed algorithm was evaluated on a public schizophrenia neuroimaging dataset, including the data of structural magnetic resonance imaging (sMRI) and functional MRI (fMRI). The results showed that the proposed algorithm achieved the best diagnosis performance. In particular, the classification accuracy, sensitivity and specificity of the proposed algorithm were 72.12% ± 8.20%, 73.50% ± 15.44% and 70.93% ± 12.93%, respectively, on the sMRI data, and it also achieved the classification accuracy of 72.33% ± 8.95%, sensitivity of 68.50% ± 16.58% and specificity of 75.73% ± 16.10% on the fMRI data. The proposed algorithm overcomes the problem that the traditional LUPI methods need the additional privileged information modality as source domain. It can be directly applied to the single-modal data for classification, and also can improve the classification performance. Therefore, it suggests that the proposed algorithm will have wider applications.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • A preliminary study on schizophrenia of distinct antipsychotic response based on diffusion tensor imaging

    The study aims to investigate whether there is difference in pre-treatment white matter parameters in treatment-resistant and treatment-responsive schizophrenia. Diffusion tensor imaging (DTI) was acquired from 60 first-episode drug-naïve schizophrenia (39 treatment-responsive and 21 treatment-resistant schizophrenia patients) and 69 age- and gender-matched healthy controls. Imaging data was preprocessed via FSL software, then diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were extracted. Besides, structural network matrix was constructed based on deterministic fiber tracking. The differences of diffusion parameters and topology attributes between three groups were analyzed using analysis of variance (ANOVA). Compared with healthy controls, treatment-responsive schizophrenia showed altered white matter mainly in anterior thalamus radiation, splenium of corpus callosum, cingulum bundle as well as superior longitudinal fasciculus. While treatment-resistant schizophrenia patients showed white matter abnormalities in anterior thalamus radiation, cingulum bundle, fornix and pontine crossing tract relative to healthy controls. Treatment-resistant schizophrenia showed more severe white matter abnormalities in anterior thalamus radiation compared with treatment-responsive patients. There was no significant difference in white matter network topological attributes among the three groups. The performance of support vector machine (SVM) showed accuracy of 63.37% in separating the two patient subgroups (P = 0.04). In this study, we showed different patterns of white matter alterations in treatment-responsive and treatment-resistant schizophrenia compared with healthy controls before treatment, which may help guiding patient identification, targeted treatment and prognosis improvement at baseline drug-naïve state.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging

    How to extract high discriminative features that help classification from complex resting-state fMRI (rs-fMRI) data is the key to improving the accuracy of brain disease recognition such as schizophrenia. In this work, we use a weighted sparse model for brain network construction, and utilize the Kendall correlation coefficient (KCC) to extract the discriminative connectivity features for schizophrenia classification, which is conducted with the linear support vector machine. Experimental results based on the rs-fMRI of 57 schizophrenia patients and 64 healthy controls show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 81.82%) than other competing methods. Specifically, compared with the traditional network construction methods (Pearson’s correlation and sparse representation) and the commonly used feature selection methods (two-sample t-test and Least absolute shrinkage and selection operator (Lasso)), the algorithm proposed in this paper can more effectively extract the discriminative connectivity features between the schizophrenia patients and the healthy controls, and further improve the classification accuracy. At the same time, the discriminative connectivity features extracted in the work could be used as the potential clinical biomarkers to assist the identification of schizophrenia.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content