Objective To investigate the effect of constitutively active Akt1 gene on rat engrafted islets in apoptosis and revascularization, and to explore potential method of gene therapy in the islet transplantation. Methods Rat islet which was transfected constitutively actived Akt1 gene via adenovirus vector using MOI=500. Thirty-six streptozotocin induced diabetic Wistar rats were divided into 3 groups complete randomly: Adv-CA-Akt1 group, Adv-LacZ group and simple transplantation group. Blood glucose and insulin were determined after operation. TUNEL was used to detect the apoptotic islet cells. HE and immunohistochemical staining of insulin were used to evaluate the histology of the islet grafts. The microvessel density (MVD) was determined by CD31 immunohistochemical staining. Results The fasting glucose level in Adv-CA-Akt1 group restored to normal 2 days after transplantation. However, in Adv-LacZ group and simple transplantation group, it reduced but still kept being hyperglycemia. And the serum insulin level was higher than other two groups ( P < 0.05). Compared to simple transplantation group and Adv-LacZ group, apoptotic rate decreased 25% in Adv-CA-Akt1 group, a large number of islet grafts were seen under the capsule of the kidney, which were positively stained by insulin antibody. In the other two groups, the islet groups mass were lighter, and few positively stained by insulin antibody. MVD showed lighter positive endothelial cells stained by CD31 antibody in the other two groups than Adv-CA-Akt1 group ( P < 0.05). Conclusion Constitutively activate Akt1 gene can prolong graft survival during early posttransplant period, and can accelerate the revascularization of islet grafts effectively.
Objective To elucidate whether glucose transporters-4 (GLUT-4) takes part in glucose uptake of mesenchymal stem cells (MSCs) and whether Akt gene improves translocation and expression of GLUT-4 in MSCs under hypoxic environment ex vivo. Methods MSCs, transfected by Akt gene and no, were cultured with normoxia (5% CO2) or hypoxia (94%N2, 1%O2 and 5% CO2) at 37 ℃ for 8 h. Glucose uptake was assayed by using radiation isotope 2-[3H]-deoxy-Dglucose (3H-G) and the expression of GLUT-4 protein and mRNA was assayed by immunocytochemistry, Western blot and RT-PCR, respectively. Results ①3 H-G intake of MSCs was significantly increased in hypoxiatransfection group than that in hypoxia-non-transfection 〔(1.39±0.13) fold, P<0.05〕, but which was lower than that in normoxia-non-transfection group, P<0.05. ②GLUT-4 was expressed by MSCs under any conditions. Compared with normoxia-non-transfection group, hypoxia decreased the expressions of GLUT-4 mRNA and protein significantly (P<0.05). ③Compared with hypoxianontransfection group, the expression of GLUT-4 〔mRNA(1.756±0.152) fold, total protein in cell (1.653±0.312) fold, protein in plasma membrane (2.041±0.258) fold〕 was increased in hypoxia-transfection group significantly (P<0.05), but which was lower than that in normoxianontransfection group (P<0.05). ④There was significantly positive relation between 3H-G intake and GLUT-4 protein expression in plasma membrane (r=0.415, P=0.001).Conclusion GLUT-4 may take part in glucose uptake of MSCs, and the capability of Akt gene to improve MSCs anti-hypoxia may be finished by its role in increasing the expression and translocation of GLUT-4.
Objective To establish hepatocellular carcinoma (HCC) cell lines which olig-expressed IGF1R gene stably. Methods An eukaryotic expressing vector pSUPER-IGF1R-siRNA that could block IGF1R expressing was transferred into hepatocellular carcinoma cell lines SMMC7721 and Hep3B with Lipofectamine 2000 reagents. After transferred, cells were selected with G418 to obtain positive clones. The expressions of IGF1R, cyclin D1 and cyclin B1 were detected by RT-PCR and Western-blot. Cell growth curve were painted. Results Two cell lines clones were screened olig-expressing IGF1R gene stably. The experimental cell lines grew more slowly than control cell lines and the expression of cyclin D1 decreased (P<0.05). Conclusion The HCC cell lines for olig-expressing IGF1R gene stably are established successfully.The plasmid pSUPER-IGF1R-siRNA can inhibit the growth of SMMC7721 and Hep3B cell lines, and the expression of cyclin D1.
Objective To observe the expression of adenovirus vector coding for mouse endostatin gene(Ad-mES) in lung cancer cells and its antiangiogenic activity in human umbilical vein endothelial cells(ECV304) in vitro.Methods Lewis lung cancer(LLC) cells were transfected with Ad-mES at different multiplicity of infection(MOI).The expression of mES in LLC cells and supernatant after 48 hours was detected by immunohistochemical staining and Western blot respectively.The inhibitory effect of supernatant at different MOI on ECV304 non-stamulated and stimulated by basic fibroblast growth factor(bFGF) was measured by methyl thiazolyl tetrazolium(MTT) assay.Results After transfected for 48 hours,endostatin was identified in the cell plasma of infected LLC and negative result was founded in non-infected LLC.Western blot revealed band of endostatin in 20 kDa in culture supernatant of infected LLC and negative results in non-infected LLC.The inhibitory effects on ECV304 cell proliferation were ber at higher MOI,and the difference was significant between stimulated and non-stamulated cells by bFGF(Plt;0.05).Conclusion Ad-mES can transfect and express endostatin effectively in LLC with biological activity
Objective To investigate the transfection and expression of recombinant plasmid human vascular endothelial growth factor 165/pcDNA3. 1 (hVEGF165/pcDNA3. 1) in myocardial cells, and to build foundation for gene therapy and cell therapy of coronary artery disease (CAD). Methods Myocardial cells were cultured in vitro and transfected by hVEGF165/pcDNA3.1 with liposome; then transient expressed protein was detected by reverse transcriptase-polymerase chain reaction (RT-PCR), immunochemistry and Western blotting. Results A strap as hVEGF165 was obtained by RT-PCR, the protein of hVEGF165 was found in myocardial cells by immunochemistry and in supernatant by Western blotting. Conclusion The recombinant plasmid hVEGFI65/pcDNA3. 1 can be expressed in myocardial cells, and may be used in studying CAD by gene therapy and cell transplantation.
Objective To construct the rhesus monkey Schwann cells (SCs) modified with human glial cell derived neurotrophic factor (hGDNF) gene. Methods The coding sequence of hGDNF amplified by PCR from pUC19-hGDNF was inserted into eukaryotic expression vector pBABE-puro. The recombinant eukaryotic expression vector pBABE-puro-hGDNF was identified with restriction enzyme digestion and DNA sequencing. The SCs were isolated from rhesus monkeys, cultured and purified. The SCs were transfected with the recombinant retrovirus vector containing hGDNF gene. The mRNA and protein expressions of hGDNF were analyzed by real-time fluorescent quantitative PCR and Western blot. Results The PCR product of hGDNF coding sequence was a 596 bp specific segment. The recombinant eukaryotic expression vector was digested into a 596 bp specific segment by specific restriction enzyme and another segment. The 596 bp segment confirmed by DNA sequencing was consistent with hGDNF sequence on GenBank. Restriction enzyme digestion and sequencing results showed that the coding sequence of hGDNF was successfully inserted into the recombinant retrovirus vector and the mRNA and protein expressions of hGDNF were significantly higher in transfected SCs than non-transfected SCs (P lt; 0.05). Conclusion The rhesus monkey SCs modified with hGDNF gene are successfully constructed and hGDNF can be released continuously and stably, which will provide a foundation for the further research about cell therapy of hGDNF-SCs in the repair of injured nerve.
Objective To investigate the feasibility of recombinant lentivirus (LVs) mediated hyperpolarization- activated cyclic nucleotide-gated cation channel 4 (HCN4) gene transfecting rat bone mesenchymal stem cells (BMSCs) so as to construct the biological pacemaker cells. Methods Sprague Dawley rats at the age of 3-5 weeks were selected to isolate and culture BMSCs using modified whole bone marrow adherent culture method. LVs was used as carrier, and enhanced green fluorescent protein (EGFP) as marker to build LVs-HCN4-EGFP virus liquid. The BMSCs at passage 3 were transfected with LVs-HCN4-EGFP virus liquid (experimental group) and LVs-EGFP null virus liquid (control group). Fluorescence microscope was used to observe the green fluorescent protein expression after 24, 48, and 72 hours of transfection; Western blot method was used to detect the HCN4 protein expression. The electrophysiology was used to detect the pacemaker current in the experimental group. Results After transfection, BMSCs in the experimental group showed normal morphology and good growth; scattered green fluorescence could be seen at 48 hours under fluorescence microscope, with a transfection efficiency of about 10%; the fluorescence expression increased slightly, with the transfection efficiency of 20% to 25% at 72 hours. While no expression of green fluorescence was seen in the control group. Western blot results showed that the same band expression as a relative molecular mass of HCN4 protein were found at 72 hours after transfection in the experimental group, only weak expression of protein band was seen in the control group; the gray value of the experimental group (33.75 ± 0.41) was significantly higher than that of the control group (23.39 ± 0.33) (t=17.524, P=0.013). In the experimental group, the pacemaker current was recorded, and it could be blocked by CsCl, in accordance with the characteristics of pacemaker current. Conclusion The recombinant LVs mediated HCN4 gene is successfully transfected into rat BMSCs, and the expression of HCN4 protein and the pacemaker current can be detected.
Objective To research the transfer of adenovirus human bone morphogenetic protein 4 (Ad-hBMP-4) to human degenerative lumbar intervertebral disc cells in vitro and analyze its effect on the proteoglycan, collagen type II, and Sox9 of intervertebral disc cells. Methods Identified Ad-hBMP-4 was amplified and detected. Degenerative lumbar intervertebral disc cells were aspirated from the degenerative lumbar intervertebral disc of patients with Modic III level disc protrusion (aged, 27-50 years). The expressing position of collagen type II was identified in the intervertebral disc cells through the laser confocal microscope. The intervertebral disc cells at passage 1 were transfected with Ad-hBMP-4 as experimental group. After 3 and 6 days of transfection, RT-PCR was used to detect the mRNA expressions of proteoglycan, collagen type II, and Sox9, and Western blot to detect the expressions of proteoglycan and collagen type II proteins. Non-transfected cells at passage 1 served as control group. Results The virus titer of Ad-hBMP-4 was 5 × 106 PFU/mL. No morphological changes in the cells after transfection by Ad-hBMP-4. Collagen type II mainly expressed in the cell cytoplasm. The mRNA expressions of the proteoglycan, collagen type II, and Sox9 in experimental group at 3 and 6 days after transfection were significantly higher than those in control group by RT-PCR (P lt; 0.05), and the expressions of proteoglycan and collagen type II proteins were significantly higher than those in contorl group by Western blot (P lt; 0.05). There were significant differences between 3 days and 6 days in experimental group (P lt; 0.05). Conclusion Ad-hBMP-4 could transfect human degenerative lumbar intervertebral cells with high efficiency and promote collagen type II, proteoglycan, and Sox9 expressions. hBMP-4 may play an important role in the repair process during early disc degeneration.
ObjectiveTo compare the osteogenic effect of bone marrow mesenchymal stem cells (BMSCs) transfected by adenovirus-bone morphogenetic protein 2-internal ribosome entry site-hypoxia inducible factor 1αmu (Ad-BMP-2-IRES-HIF-1αmu) and by Ad-cytomegalovirus (CMV)-BMP-2-IRES-human renilla reniformis green fluorescent protein 1 (hrGFP-1) single gene so as to optimize the source of osteoblasts. MethodsBMSCs were separated and cultured from 1-month-old New Zealand white rabbit. The BMSCs at passage 3 were transfected by virus. The experiment was divided into 4 groups (groups A, B, C, and D) according to different virus: BMSCs were transfected by Ad-BMP-2-IRES-HIF-1αmu in group A, by Ad-CMV-BMP-2-IRES-hrGFP-1 in group B, by Ad-CMV-IRES-hrGFP-1 in group C, and BMSCs were not transfected in group D. The optimum multiplicity of infection (MOI) (50, 100, 150, and 200) was calculated and then the cells were transfected by the optimum MOI, respectively. The expression of BMP-2 gene was detected by immunohistochemistry staining after transfected, the expressions of BMP-2 protein and HIF-1α protein were detected by Western blot method. The osteogenic differentiation potential was detected by alkaline phosphatase (ALP) activity and Alizarin red staining. ResultsThe optimum MOI of groups A, B, and C was 200, 150, and 100, respectively. The expression of BMP-2 was positive in groups A and B, and was negative in groups C and D by immunohistochemistry staining; the number of positive cells in group A was more than that in group B (P ﹤ 0.05). The expression of BMP-2 protein in groups A and B was significantly higher than that in groups C and D (P ﹤ 0.05), group A was higher than group B (P ﹤ 0.05). The expression of HIF-1α protein in group A was significantly higher than those in the other 3 groups (P ﹤ 0.05), no significant difference was found among the other 3 groups (P ﹥ 0.05). ALP activity in groups A and B was significantly higher than that in groups C and D (P ﹤ 0.05), group A was higher than group B (P ﹤ 0.05). Calcium nodules could be seen in groups A and B, but not in groups C and D; the number of calcium nodules in group A was higher than that in group B (P ﹤ 0.05). ConclusionThe expression of BMP-2 and osteogenic effect of BMSCs transfected by Ad-BMP-2-IRES-HIF-1αmu (double genes in single carrier) are higher than those of BMSCs transfected by Ad-CMV-BMP-2-IRES-hrGFP-1 (one gene in single carrier).
Objective To explore the human stromal cell-derived factor 1α (hSDF-1α) and human vascular endothel ial growth factor 165 (hVEGF165) mRNA expressions of the transfected cells after hSDF-1α gene and hVEGF165 gene were transfected into rat myoblasts in vitro so as to lay a foundation for further study on the synergistic effects of 2 genes on tissue engineered skeletal muscle vascularization. Methods The myoblasts of 1-day-old Sprague Dawley rats were cultured and purified by trypsin digestion assay in vitro and were identified by immunohistochemistry staining of Desmin. pproximately 70%-80% of confluent myoblasts were transfected with enhanced green fluorescent protein (EGFP)-hSDF-1α and EGFP-hVEGF165 genes in vitro (transfected group) and were not transfected (control group). The expressions of hSDF-1αand hVEGF165 mRNA and protein in the transfected cells were detected by RT-PCR, ELISA, and Western blot espectively.Results The cultured cells were identified as myoblasts by immunohistochemistry staining of Desmin. The expression ofgreen fluorescent protein was observed in transfected cells, indicating that hSDF-1α and hVEGF165 genes were transfected into myoblasts successfully. The mRNA and protein expressions of the 2 genes were positive in the transfected group by RT-PCR and Western bolt assay at 2, 4, 6, and 8 days after transfection, and were negative in the control group. The expressions of hSDF- 1α and hVEGF165 showed a stable low level in the control group, but the expressions of the proteins increased at 2 days and then showed gradual downtrend with time in the transfected group by ELISA assay. There were significant differences in the expressions of hSDF-1α and hVEGF165 proteins between different time points in the transfected group, and between 2 groups (P lt; 0.05). Conclusion hSDF-1α and hVEGF165 genes are successfully transfected into myoblasts in vitro, and mRNA and proteins of hSDF-1α and hVEGF165 can be expressed in the transfected myoblasts, which may provide the experimental evidence for the expressions of hSDF-1α and hVEGF165 mRNA and proteins in vivo successfully.