1. |
Gao Y, Yu T, Zhang Y, et al. Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: a meta-analysis[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4307-4317. DOI: 10.1167/iovs.17-23747.
|
2. |
Hurwitz HI, Saltz LB, van Cutsem E, et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase Ⅱ and Ⅲ studies[J]. J Clin Oncol, 2011, 29(13): 1757-1764. DOI: 10.1200/JCO.2010.32.3220.
|
3. |
Schutz FA, Je Y, Azzi GR, et al. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes[J]. Ann Oncol, 2011, 22(6): 1404-1412. DOI: 10.1093/annonc/mdq587.
|
4. |
Tatlipinar S, Dinç UA, Yenerel NM, er al. Short-term effects of a single intravitreal bevacizumab injection on retinal vessel calibre[J]. Clin Exp Optom, 2012, 95(1): 94-98. DOI: 10.1111/j.1444-0938.2011.00662.x.
|
5. |
Kurt MM, Çekiç O, Akpolat Ç, et al. Comparative retinal vessel size study of intravitreal ranibizumab and bevacizumab in eyes with neovascular age-related macular degeneration[J]. Ophthalmologica, 2017, 238(3): 147-153. DOI: 10.1159/000477180.
|
6. |
Mohamed R, Saunders DC, Mathews JP. Consulting the patients: Avastin in the treatment of wet AMD (Part Ⅱ)[J]. Eye (Lond), 2019, 33(6): 871-873. DOI: 10.1038/s41433-019-0366-6.
|
7. |
De Jong FJ, Vernooij MW, Ikram MK, et al. Arteriolar oxgen saturation, cerebral blood flow, and retinal vessel diameter. The Rotterdam Study[J]. Ophthalmology, 2008, 115(5): 887-892. DOI: 10.1016/j.ophtha.2007.06.036.
|
8. |
Soliman W, Vinten M, Sander B, et al. Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema[J]. Acta Ophthalmol, 2008, 86(4): 365-371. DOI: 10.1111/j.1600-0420.2007.01057.x.
|
9. |
Park J, Lee S, Son Y. Effects of two different doses of intravitreal bevacizumab on subfoveal choroidal thickness and retinal vessel diameter in branch retinal vein occlusion[J]. Int J Ophthalmol, 2016, 9(7): 999-1005. DOI: 10.18240/ijo.2016.07.11.
|
10. |
Papadopoulou DN, Mendrinos E, Mangioris G, et al. Intravitreal ranibizumab may induce retinal arteriolar vasoconstriction in patients with neovascular age-related macular degeneration[J]. Ophthalmology, 2009, 116(9): 1755-1761. DOI: 10.1016/j.ophtha.2009.03.017.
|
11. |
Mendrinos E, Mangioris G, Papadopoulou DN, et al. Long-term results of the effect of intravitreal ranibizumab on the retinal arteriolar diameter in patients with neovascular age-related macular degeneration[J]. Acta Ophthalmol, 2013, 91(3): 184-190. DOI: 10.1111/aos.12008.
|
12. |
Sacu S, Pemp B, Weigert G, et al. Response of retinal vessels and retrobulbar hemodynamics to intravitreal anti-VEGF treatment in eyes with branch retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3046-3050. DOI: 10.1167/iovs.10-5842.
|
13. |
Fontaine O, Olivier S, Descovich D, et al. The effect of intravitreal injection of bevacizumab on retinal circulation in patients with neovascular macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7400-7405. DOI: 10.1167/iovs.10-6646.
|
14. |
Bonnin P, Pournaras JA, Lazrak Z, et al. Ultrasound assessment of short-term ocular vascular effects of intravitreal injection of bevacizumab (Avastin®) in neovascular age-related macular degeneration[J]. Acta Ophthalmol, 2010, 88(6): 641-645. DOI: 10.1111/j.1755-3768.2009.01526.x.
|
15. |
Mete A, Saygili O, Mete A, et al. Effects of intravitreal bevacizumab (Avastin) therapy on retrobulbar blood flow parameters in patients with neovascular age-related macular degeneration[J]. J Clin Ultrasound, 2010, 38(2): 66-70. DOI: 10.1002/jcu.20650.
|
16. |
Mete A, Saygili O, Mete A, et al. Does ranibizumab (Lucentis) change retrobulbar bloos flow in patients with neovascular age-related macular degeneration[J]. Ophthalmic Res, 2012, 47(3): 141-145. DOI: 10.1159/000330509.
|
17. |
Hosseini H, Lotfi M, Esfahani MH, et al. Effect of intravitreal bevacizumab on retrobulbar blood flow in injected and uninjected fellow eyes of patients with neovascular age-related macular degeneration[J]. Retina, 2012, 32(5): 967-971. DOI: 10.1097/IAE.0b013e31822c28d6.
|
18. |
Örnek N, Inal M, Erbahceci IE, et al. Effect of intravitreal bevacizumab on retrobulbar blood flow of patients with diabetic macular edema[J]. Eur J Ophthalmol, 2015, 25(6): 539-545. DOI: 10.5301/ejo.5000617.
|
19. |
Toklu Y, Cakmak HB, Raza S, et al. Short-term effects of intravitreal bevacizumab (Avastin®) on retrobulbar hemodynamics in patients with neovascular age-related macular degeneration[J]. Acta Ophthalmol, 2011, 89(1): 41-45. DOI: 10.1111/j.1755-3768.2010.02075.x.
|
20. |
赵露, 谢国丽, 王艳玲. 玻璃体腔注射雷珠单抗对湿性年龄相关性黄斑变性患者眼血流动力学的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(4): 101-104. DOI: 10.6040/j.issn.1673-3770.0.2015.481.Zhao L, Xie GL, Wang YL. Changes of ocular hemodynamics after intravitreal ranibizumab injection in patients with wet age-related macular degeneration[J]. J Otolaryngol Ophthal Shandong Univ, 2016, 30(4): 101-104. DOI: 10.6040/j.issn.1673-3770.0.2015.481.
|
21. |
Gunay M, Tuten A, Sancak S, et al. Effect of single intravitreal bevacizumab on ophthalmic and middle cerebral arterial blood flow in retinopathy of prematurity[J]. Ophthalmic Res, 2016, 55(4): 165-171. DOI: 10.1159/000443208.
|
22. |
Nagahara M, Tamaki Y, Tomidokoro A, et al. In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 87-92. DOI: 10.1167/iovs.09-4422.
|
23. |
张锦德, 檀邹, 林黎升, 等. 激光散斑成像在血流监测中的研究进展[J]. 中国激光医学杂志, 2016, 25(5): 233-241, 244-245. DOI: 10.13480/j.issn1003-9430.2016.0233.Zhang JD, Tan Z, Lin LS, et al. Recent advances in monitoring blood flow with laser speckle imaging[J]. Chinese Journal of Laser Medicine & Surgery, 2016, 25(5): 233-241, 244-245. DOI: 10.13480/j.issn1003-9430.2016.0233.
|
24. |
Sugiyama T, Araie M, Riva CE, et al. Use of laser speckle flowgraphy in ocular blood flow research[J]. Acta Ophthalmol, 2010, 88(7): 723-729. DOI: 10.1111/j.1755-3768.2009.01586.x.
|
25. |
Tamaki Y, Araie M, Tomita K, et al. Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon[J]. Ophthalmol, 1997, 41(1): 49-54. DOI: 10.1016/S0021-5155(96)00008-1.
|
26. |
Matsumoto M, Suzuma K, Fukazawa Y, et al. Retinal blood flow levels measured by laser speckle flowgraphy in patients who received intravitreal bevacizumab injection for macular edema secondary to central retinal vein occlusion[J]. Retina Cases Brief Rep, 2014, 8(1): 60-66. DOI: 10.1097/ICB.0000000000000005.
|
27. |
Yamada Y, Suzuma K, Matsumoto M, et al. Retinal blood flow correlates to aqueous vasular endothelial growth factor in central retinal vein occlusion[J]. Retina, 2015, 35(10): 2037-2042. DOI: 10.1097/IAE.0000000000000595.
|
28. |
Matsumoto M, Suzuma K, Yamada Y, et al. Retinal blood flow after intraviteal bevacizumab is a predictive factor for outcomes of macular edema associated with central retinal vein occlusion[J]. Retina, 2018, 38(2): 283-291. DOI: 10.1097/IAE.0000000000001531.
|
29. |
Nitta F, Kunikata H, Aizawa N, et al. The effect of intravitreal bevacizumab on ocular blood flow in diabetic retinopathy and branch retinal vein occlusion as measured by laser speckle flowgraphy[J]. Clin Ophthalmol, 2014, 8: 1119-1127. DOI: 10.2147/OPTH.S62022.
|
30. |
Fukami M, Iwase T, Yamamoto K, et al. Changes in retinal microcirculation after intravitreal ranibizumab injection in eyes with macular edema secondary to branch retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1246-1255. DOI: 10.1167/iovs.16-21115.
|
31. |
Nagaoka T, Sogawa K, Yoshida A. Changes in retinal blood flow in patients with macular edema secondary to branch retinal vein occlusion before and after intravitreal injection of bevacizumab[J]. Retina, 2014, 34(10): 2037-2043. DOI: 10.1097/IAE.0000000000000172.
|
32. |
Noma H, Yasuda K, Minezaki T, et al. Changes of retinal flow volume after intravitreal injection of bevacizumab in branch retinal vein occlusion with macular edema: a case series[J]. BMC Ophthalmol, 2016, 16: 61. DOI: 10.1186/s12886-016-0239-8.
|
33. |
Wang L, Cull AG, Piper C, et al. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method[J]. Invest Ophthalmol Vis Sci, 2012, 53(13): 8303-8309. DOI: 10.1167/iovs.12-10911.
|
34. |
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44. DOI: 10.1016/j.ajo.2015.04.021.
|
35. |
Miura M, Hong YJ, Yasuno Y, et al. Three-dimensional vasucular imaging of proliferative diabetic retinopathy by Dopple optical coherence tomography[J]. Am J Ophthalmol, 2015, 159(3): 528-538. DOI: 10.1016/j.ajo.2014.12.002.
|
36. |
Huang D, Jia Y, Rispoli M, et al. Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment[J]. Retina, 2015, 35(11): 2260-2264. DOI: 10.1097/IAE.0000000000000846.
|
37. |
Lumbroso B, Rispoli M, Savastano MC. Longitudinal optical coherence tomography-angiography study of type 2 naive choroidal neovascularization early response after treatment[J]. Retina, 2015, 35(11): 2242-2251. DOI: 10.1097/IAE.0000000000000879.
|
38. |
Takeuchi J, Kataoka K, Ito Y, et al. Optical coherence tomography angiography to quantify choroidal neovascularization in response to aflibercept[J]. Ophthalmologica, 2018, 240(2): 90-98. DOI: 10.1159/000487611.
|
39. |
Marques JP, Costa JF, Marques M, et al. Sequential morphological changes in the CNV net after intravitreal anti-VEGF evaluated with OCT angiography[J]. Ophthalmic Res, 2016, 55(3): 145-151. DOI: 10.1159/000442671.
|
40. |
Chen Q, Yu X, Sun Z, et al. The application of OCTA in assessment of anti-VEGF therapy for idiopathic choroidal neovascularization[J/OL]. J Ophthalmol, 2016, 2016: 5608250[2016-07-04]. http://europepmc.org/article/MED/27471600. DOI: 10.1155/2016/5608250.
|
41. |
Pilotto E, Frizziero L, Daniele AR, et al. Early OCT angiography changes of type 1 CNV in exudative AMD treated with anti-VEGF[J]. Br J Ophthalmol, 2019, 103(1): 67-71. DOI: 10.1136/bjophthalmol-2017-311752.
|
42. |
Ghasemi Falavarjani K, Iafe NA, Hubschman JP, et al. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 30-34. DOI: 10.1167/iovs.16-20579.
|
43. |
Sellam A, Glacet-Bernard A, Coscas F, et al. Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF: optical coherence tomography angiography follow-up of retinal vein occlusion[J]. Retina, 2017, 37(6): 1176-1184. DOI: 10.1097/IAE.0000000000001334.
|
44. |
Tokayer J, Jia Y, Dhalla AH, et al. Blood flow velocity quantification using splitspectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.
|
45. |
Suzuki N, Hirano Y, Tomiyasu T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5681-5687. DOI: 10.1167/iovs-16-20648.
|
46. |
Gill A, Cole ED, Novais EA, et al. Visualization of changes in the foveal avascular zone in both observed and treated diabetic macular edema using optical coherence tomography angiography[J/OL]. Int J Retina Vitreous, 2017, 3: 19[2017-06-19]. https://journalretinavitreous.biomedcentral.com/articles/10.1186/s40942-017-0074-y. DOI: 10.1186/s40942-017-0074-y.
|
47. |
Michalska-Małecka K, Heinke Knudsen A. Optical coherence tomography angiography in patients with diabetic retinopathy treated with anti-VEGF intravitreal injections: case report[J/OL]. Medicine (Baltimore), 2017, 96(45): 8379[2017-11-15]. http://europepmc.org/article/MED/29137019. DOI: 10.1097/MD.0000000000008379.
|
48. |
Enaida H, Okamoto K, Fujii H, et al. LSFG findings of proliferative diabetic retinopathy after intravitreal injection of bevacizumab[J/OL]. Ophthalmic Surg Lasers Imaging, 2010, 41: 1-3[2010-12-01]. https://www.healio.com/ophthalmology/journals/osli/2010-11-41-6/%7B937508b8-781b-461b-a7ba-bab17e40f2fa%7D/lsfg-findings-of-proliferative-diabetic-retinopathy-after-intravitreal-injection-of-bevacizumab. DOI: 10.3928/15428877-20101124-11.
|
49. |
Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability[J]. Proc Natl Acad Sci USA, 2001, 98(5): 2604-2609. DOI: 10.1073/pnas.041359198.
|
50. |
Okamoto M, Matsuura T, Ogata N. Choroidal thickness and choroidal blood flow after intravitreal bevacizumab injection in eyes with central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(1): 25-32. DOI: 10.3928/23258160-20150101-04.
|
51. |
Pournaras CJ, Rungger-Brandle E, Riva CE, et al. Regulation of retinal blood flow in health and disease[J]. Prog Retin Eye Res, 2008, 27(3): 284-330. DOI: 10.1016/j.preteyeres.2008.02.002.
|
52. |
Schraermeyer U, Julien S. Formation of immune complexes and thrombotic microangiopathy after intravitreal injection of bevacizumab in the primate eye[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(9): 1303-1313. DOI: 10.1007/s00417-012-2055-z.
|
53. |
Schraermeyer U, Julien S. Effects of bevacizumab in retina and choroid after intravitreal injection into monkey eyes[J]. Expert Opin Biol Ther, 2013, 13(2): 157-167. DOI: 10.1517/14712598.2012.748741.
|
54. |
Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study[J]. Ophthalmology, 2009, 116(1): 57-65. DOI: 10.1016/j.ophtha.2008.10.018.
|
55. |
Holz FG, Amoaku W, Donate J, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study[J]. Ophthalmology, 2011, 118(4): 663-671. DOI: 10.1016/j.ophtha.2010.12.019.
|
56. |
Pournaras CJ, Riva CE. Retinal blood flow evaluation[J]. Ophthalmologica, 2013, 229(2): 61-74. DOI: 10.1159/000338186.
|
57. |
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans[J]. Prog Retin Eye Res, 2017, 58: 115-151. DOI: 10.1016/j.preteyeres.2017.01.003.
|