- Department of Ophthalmology, The Sceond People's Hospital of Yunnan Province, Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650021, China;
MiRNAs are stable small RNAs that are expressed abundantly in animals and plants. They can bind to the 3'-untranslated region of the target mRNA, and regulate its expression at the post-transcriptional level. The miRNAs’ abnormal expression and its following abnormal biological regulation are closely related to the occurrence and development of age-related macular degeneration (AMD), including inflammatory response, oxidative stress injury, phagocytosis dysfunction and abnormal angiogenesis. Since the dysregulation of miR-155, miR-125b and miR-34a seems to play a more important role in AMD, these microRNAs may be expected to become the new biomarkers and therapeutic targets for AMD.
Citation: Liu Xiaochen, Wu Min. The regulation of miRNA in age-related macular degeneration. Chinese Journal of Ocular Fundus Diseases, 2020, 36(7): 560-564. doi: 10.3760/cma.j.cn511434-20180528-00169 Copy
1. | Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science, 2002, 297(5589): 2056-2060. DOI: 10.1126/science.1073827. |
2. | Kozomara A, Griffithsjones S. MiRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Research, 2011, 39(Database issue): D152-157. DOI: 10.1093/nar/gkq1027. |
3. | Kozomara A, Griffithsjones S. MiRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2014, 42(Database issue): D68-73. DOI: 10.1093/nar/gkt1181. |
4. | Karali M, Persico M, Mutarelli M, et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs[J]. Nucleic Acids Research, 2011, 44(4): 1525-1540. DOI: 10.1093/nar/gkw039. |
5. | Shaham O, Gueta K, Mor E, et al. Pax6 regulates gene expression in the vertebrate lens through miR-204[J/OL]. PLoS Genet, 2013, 9(3): 1003357[2013-03-14]. http://europepmc.org/article/MED/23516376. DOI: 10.1371/journal.pgen.1003357. |
6. | Szabó D, Sándor GL, Tóth G, et al. Visual impairment and blindness in hungary[J]. Acta Ophthalmol, 2018, 96(2): 168-173. DOI: 10.1111/aos.13542. |
7. | Xia F, Wu L, Weng C, et al. Causes and three-year incidence of irreversible visual impairment in Jing-An District, Shanghai, China from 2010-2015[J]. Bmc Ophthalmol, 2017, 17(1): 216. DOI: 10.1186/s12886-017-0603-3. |
8. | Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD[J/OL]. Oxid Med Cell Longev, 2018, 2018: 8374647[2018-02-01]. http://europepmc.org/article/MED/29484106. DOI: 10.1155/2018/8374647. |
9. | Ertekin S, Yıldırım O, Dinç E, et al. Evaluation of circulating miRNAs in wet age-related macular degeneration[J]. Mol Vis, 2014, 20(17): 1057-1066. |
10. | Ren C, Liu Q, Wei Q, et al. Circulating miRNAs as potential biomarkers of age-related macular degeneration[J]. Cell Physiol Biochem, 2017, 41(4): 1413-1423. DOI: 10.1159/000467941. |
11. | Romano GL, Platania CBM, Drago F, et al. Retinal and circulating miRNAs in age-related macular degeneration: an in vivo animal and human study[J]. Front Pharmacol, 2017, 8: 168. DOI: 10.3389/fphar.2017.00168. |
12. | Ménard C, Rezende FA, Miloudi K, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD[J]. Oncotarget, 2016, 7(15): 19171-19184. DOI: 10.18632/oncotarget.8280. |
13. | Assel MJ, Li F, Wang Y, et al. Genetic polymorphisms of CFH and ARMS2 do not predict response to antioxidants and zinc in patients with age-related macular degeneration: independent statistical evaluations of data from the age-related eye disease study[J]. Ophthalmology, 2018, 125(3): 391-397. DOI: 10.1016/j.ophtha.2017.09.008. |
14. | Jabbarpoor Bonyadi MH, Yaseri M, Nikkhah H, et al. Association of risk genotypes of ARMS2/LOC387715 A69S and CFH Y402H with age-related macular degeneration with and without reticular pseudodrusen: a meta-analysis[J]. Acta Ophthalmol, 2018, 96(2): 105-110. DOI: 10.1111/aos.13494. |
15. | Toomey CB, Johnson LV, Bowes Rickman C. Complement factor H in AMD: Bridging genetic associations and pathobiology[J]. Prog Retin Eye Res, 2018, 62: 38-57. DOI: 10.1016/j.preteyeres.2017.09.001. |
16. | Lukiw WJ, Surjyadipta B, Dua P, et al. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer's disease (AD) and in age-related macular degeneration (AMD)[J]. Int J Biochem Mol Biol, 2012, 3(1): 105-116. |
17. | He F, Liu B, Meng Q, et al. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy[J/OL]. Biosci Rep, 2016, 36(6): 00433[2016-12-23]. http://europepmc.org/abstract/MED/27852797. DOI: 10.1042/BSR20160290. |
18. | Kutty KR, Nagineni CN, Samuel W, et al. Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ[J]. Mol Vis, 2013, 19: 737-750. |
19. | Sun HJ, Jin XM, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2): 28-38. DOI: 10.1159/000502614. |
20. | Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4[J]. Cell Mol Neurobiol, 2017, 37(2): 195-210. DOI: 10.1007/s10571-016-0361-4. |
21. | Bretz CA, Divoky V, Prchal J, et al. Erythropoietin signaling increases choroidal macrophages and cytokine expression, and exacerbates choroidal neovascularization[J]. Sci Rep, 2018, 8(1): 2161. DOI: 10.1038/s41598-018-20520-z. |
22. | Lin JB, Moolani HV, Sene A, et al. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration[J/OL]. JCI Insight, 2018, 3(7): 120157[2018-04-05]. https://doi.org/10.1172/jci.insight.120157. DOI: 10.1172/jci.insight.120157. |
23. | 张鹏飞, 孙晓东. 视网膜小胶质细胞在年龄相关性黄斑变性中的免疫调节作用[J]. 中华眼科杂志, 2016, 52(5): 386-390. DOI: 10.3760/cma.j.issn.0412-4081.2016.05.016.Zhang PF, Sun XD. The immunomodulatory role of retinal microglial cells in age-related macular degeneration[J]. Chin J Ophthalmol, 2016, 52(5): 386-390. DOI: 10.3760/cma.j.issn.0412-4081.2016.05.016. |
24. | Cao X, Shen D, Patel MM, et al. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study[J]. Pathol Int, 2011, 61(9): 528-535. DOI: 10.1111/j.1440-1827.2011.02695.x. |
25. | Guedes J, Cardoso AL, Pedroso de lima MC. Involvement of microRNA in microglia-mediated immune response[J/OL]. Clin Dev Immunol, 2013, 2013(4): 186872[2013-05-23]. http://europepmc.org/article/MED/23762086. DOI: 10.1155/2013/186872. |
26. | Yan L, Lee S, Lazzaro DR, et al. Single and compound knock-outs of microRNA (miRNA)-155 and its angiogenic gene target CCN1 in mice alter vascular and neovascular growth in the retina via resident microglia[J]. J Biol Chem, 2015, 290(38): 23264-23281. DOI: 10.1074/jbc.M115.646950. |
27. | Zhang P, Wang H, Luo X, et al. MicroRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization[J]. Inflammation, 2018, 41(1): 143-153. DOI: 10.1007/s10753-017-0672-8. |
28. | Sene A, Khan AA, Cox D, et al. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration[J]. Cell Metab, 2013, 17(4): 549-561. DOI: 10.1016/j.cmet.2013.03.009. |
29. | Ayaz L, Dinç E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress[J]. Cutan Ocul Toxicol, 2018, 37(2): 121-126. DOI: 10.1080/15569527.2017.1355314. |
30. | Lin H, Qian J, Castillo AC, et al. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6308-6314. DOI: 10.1167/iovs.10-6632. |
31. | Bo T, Maidana DE, Bernard D, et al. MiR-17-3p exacerbates oxidative damage in human retinal pigment epithelial cells[J/OL]. PLoS One, 2016, 11(8): 0160887[2016-08-09]. http://europepmc.org/article/MED/27505139. DOI: 10.1371/journal.pone.0160887. |
32. | Tong N, Jin R, Zhou Z, et al. Involvement of microRNA-34a in age-related susceptibility to oxidative stress in ARPE-19 cells by targeting the silent mating type information regulation 2 homolog 1/p66shc pathway: implications for age-related macular degeneration[J]. Front Aging Neurosci, 2019, 11: 137. DOI: 10.3389/fnagi.2019.00137. |
33. | Shao Y, Yu Y, Zhou Q, et al. Inhibition of miR-134 protects against hydrogen peroxide-induced apoptosis in retinal ganglion cells[J]. J Mol Neurosci, 2015, 56(2): 461-471. DOI: 10.1007/s12031-015-0522-9. |
34. | Li W. Phagocyte dysfunction, tissue aging and degeneration[J]. Ageing Res Rev, 2013, 12(4): 1005-1012. DOI: 10.1016/j.arr.2013.05.006. |
35. | Marion S, Hoffmann E, Holzer D, et al. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion[J]. Traffic, 2011, 12(4): 421-437. DOI: 10.1111/j.1600-0854.2011.01158.x. |
36. | Erwig LP, McPhilips KA, Wynes MW, et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins[J]. Proc Natl Acad Sci USA, 2006, 103(34): 12825-12830. DOI: 10.1073/pnas.0605331103. |
37. | Murad N, Kokkinaki M, Gunawardena N, et al. MiR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration[J]. FEBS J, 2014, 281(23): 5251-5264. DOI: 10.1111/febs.13066. |
38. | Shinohara M, Fujioka S, Murray ME, et al. Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer’s disease[J]. Brain, 2014, 137(Pt 5): 1533-1549. DOI: 10.1093/brain/awu046. |
39. | Bhattacharjee S, Zhao Y, Dua P, et al. MicroRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration[J/OL]. PLoS One, 2016, 11(3): 0150211[2016-03-07]. http://europepmc.org/article/MED/26949937. DOI: 10.1371/journal.pone.0150211. |
40. | Wang L, Lee AY, Wigg JP, et al. MiR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model[J]. Int J Mol Sci, 2016, 17(6): 895. DOI: 10.3390/ijms17060895. |
41. | Gong Q, Xie J, Liu Y, et al. Differentially expressed microRNAs in the development of early diabetic retinopathy[J/OL]. J Diabetes Res, 2017, 2017: 4727942[2017-06-15]. http://europepmc.org/article/MED/28706953. DOI: 10.1155/2017/4727942. |
42. | Mirzoeva S, Franzen CA, Pelling JC. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3-and Src-dependent mechanism[J]. Mol Carcinog, 2014, 53(8): 598-609. DOI: 10.1002/mc.22005. |
43. | Wang L, Lee AY, Wigg JP, et al. MiRNA involvement in angiogenesis in age-related macular degeneration[J]. J Physiol Biochem, 2016, 72(4): 583-592. DOI: 10.1007/s13105-016-0496-2. |
44. | Cai J, Yin G, Lin B, et al. Roles of NFκB-miR-29s-MMP-2 circuitry in experimental choroidal neovascularization[J]. J Neuroinflammation, 2014, 11: 88. DOI: 10.1186/1742-2094-11-88. |
45. | Gao F, Sun M, Gong Y, et al. MicroRNA-195a-3p inhibits angiogenesis by targeting MMP2 in murine mesenchymal stem cells[J]. Mol Reprod Dev, 2016, 83(5): 413-423. DOI: 10.1002/mrd.22638. |
46. | Zhou Q, Anderson C, Zhang H, et al. Repression of choroidal neovascularization through actin cytoskeleton pathways by microRNA-24[J]. Mol Ther, 2014, 22(2): 378-389. DOI: 10.1038/mt.2013.243. |
47. | Liu CH, Sun Y, Li J, et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization[J]. Proc Natl Acad Sci USA, 2015, 112(39): 12163-12168. DOI: 10.1073/pnas.1508426112. |
48. | Che P, Liu J, Shan Z, et al. MiR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation[J]. Aging Cell, 2014, 13(5): 926-934. DOI: 10.1111/acel.12252. |
49. | Svensson D, Gidlöf O, Turczyńska KM, et al. Inhibition of microRNA-125a promotes human endothelial cell proliferation and viability through an antiapoptotic mechanism[J]. J Vasc Res, 2014, 51(3): 239-245. DOI: 10.1159/000365551. |
50. | Muramatsu F, Kidoya H, Naito H, et al. MicroRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin[J]. Oncogene, 2013, 32(4): 414-421. DOI: 10.1038/onc.2012.68. |
51. | Natoli R, Fernando N. MicroRNA as therapeutics for age-related macular degeneration[J]. Adv Exp Med Biol, 2018, 1074: 37-43. DOI: 10.1007/978-3-319-75402-4_5. |
52. | Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells[J]. J Biol Chem, 2010, 285(23): 17442-17452. DOI: 10.1074/jbc.M110.107821. |
53. | Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?[J]. Circ Res, 2012, 110(3): 483-495. DOI: 10.1161/CIRCRESAHA.111.247452. |
54. | Berber P, Grassmann F, Kiel C, et al. An eye on age-related macular degeneration: the role of microRNAs in disease pathology[J]. Mol Diagn Ther, 2017, 21(1): 31-43. DOI: 10.1007/s40291-016-0234-z. |
- 1. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science, 2002, 297(5589): 2056-2060. DOI: 10.1126/science.1073827.
- 2. Kozomara A, Griffithsjones S. MiRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Research, 2011, 39(Database issue): D152-157. DOI: 10.1093/nar/gkq1027.
- 3. Kozomara A, Griffithsjones S. MiRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2014, 42(Database issue): D68-73. DOI: 10.1093/nar/gkt1181.
- 4. Karali M, Persico M, Mutarelli M, et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs[J]. Nucleic Acids Research, 2011, 44(4): 1525-1540. DOI: 10.1093/nar/gkw039.
- 5. Shaham O, Gueta K, Mor E, et al. Pax6 regulates gene expression in the vertebrate lens through miR-204[J/OL]. PLoS Genet, 2013, 9(3): 1003357[2013-03-14]. http://europepmc.org/article/MED/23516376. DOI: 10.1371/journal.pgen.1003357.
- 6. Szabó D, Sándor GL, Tóth G, et al. Visual impairment and blindness in hungary[J]. Acta Ophthalmol, 2018, 96(2): 168-173. DOI: 10.1111/aos.13542.
- 7. Xia F, Wu L, Weng C, et al. Causes and three-year incidence of irreversible visual impairment in Jing-An District, Shanghai, China from 2010-2015[J]. Bmc Ophthalmol, 2017, 17(1): 216. DOI: 10.1186/s12886-017-0603-3.
- 8. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD[J/OL]. Oxid Med Cell Longev, 2018, 2018: 8374647[2018-02-01]. http://europepmc.org/article/MED/29484106. DOI: 10.1155/2018/8374647.
- 9. Ertekin S, Yıldırım O, Dinç E, et al. Evaluation of circulating miRNAs in wet age-related macular degeneration[J]. Mol Vis, 2014, 20(17): 1057-1066.
- 10. Ren C, Liu Q, Wei Q, et al. Circulating miRNAs as potential biomarkers of age-related macular degeneration[J]. Cell Physiol Biochem, 2017, 41(4): 1413-1423. DOI: 10.1159/000467941.
- 11. Romano GL, Platania CBM, Drago F, et al. Retinal and circulating miRNAs in age-related macular degeneration: an in vivo animal and human study[J]. Front Pharmacol, 2017, 8: 168. DOI: 10.3389/fphar.2017.00168.
- 12. Ménard C, Rezende FA, Miloudi K, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD[J]. Oncotarget, 2016, 7(15): 19171-19184. DOI: 10.18632/oncotarget.8280.
- 13. Assel MJ, Li F, Wang Y, et al. Genetic polymorphisms of CFH and ARMS2 do not predict response to antioxidants and zinc in patients with age-related macular degeneration: independent statistical evaluations of data from the age-related eye disease study[J]. Ophthalmology, 2018, 125(3): 391-397. DOI: 10.1016/j.ophtha.2017.09.008.
- 14. Jabbarpoor Bonyadi MH, Yaseri M, Nikkhah H, et al. Association of risk genotypes of ARMS2/LOC387715 A69S and CFH Y402H with age-related macular degeneration with and without reticular pseudodrusen: a meta-analysis[J]. Acta Ophthalmol, 2018, 96(2): 105-110. DOI: 10.1111/aos.13494.
- 15. Toomey CB, Johnson LV, Bowes Rickman C. Complement factor H in AMD: Bridging genetic associations and pathobiology[J]. Prog Retin Eye Res, 2018, 62: 38-57. DOI: 10.1016/j.preteyeres.2017.09.001.
- 16. Lukiw WJ, Surjyadipta B, Dua P, et al. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer's disease (AD) and in age-related macular degeneration (AMD)[J]. Int J Biochem Mol Biol, 2012, 3(1): 105-116.
- 17. He F, Liu B, Meng Q, et al. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy[J/OL]. Biosci Rep, 2016, 36(6): 00433[2016-12-23]. http://europepmc.org/abstract/MED/27852797. DOI: 10.1042/BSR20160290.
- 18. Kutty KR, Nagineni CN, Samuel W, et al. Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ[J]. Mol Vis, 2013, 19: 737-750.
- 19. Sun HJ, Jin XM, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2): 28-38. DOI: 10.1159/000502614.
- 20. Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4[J]. Cell Mol Neurobiol, 2017, 37(2): 195-210. DOI: 10.1007/s10571-016-0361-4.
- 21. Bretz CA, Divoky V, Prchal J, et al. Erythropoietin signaling increases choroidal macrophages and cytokine expression, and exacerbates choroidal neovascularization[J]. Sci Rep, 2018, 8(1): 2161. DOI: 10.1038/s41598-018-20520-z.
- 22. Lin JB, Moolani HV, Sene A, et al. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration[J/OL]. JCI Insight, 2018, 3(7): 120157[2018-04-05]. https://doi.org/10.1172/jci.insight.120157. DOI: 10.1172/jci.insight.120157.
- 23. 张鹏飞, 孙晓东. 视网膜小胶质细胞在年龄相关性黄斑变性中的免疫调节作用[J]. 中华眼科杂志, 2016, 52(5): 386-390. DOI: 10.3760/cma.j.issn.0412-4081.2016.05.016.Zhang PF, Sun XD. The immunomodulatory role of retinal microglial cells in age-related macular degeneration[J]. Chin J Ophthalmol, 2016, 52(5): 386-390. DOI: 10.3760/cma.j.issn.0412-4081.2016.05.016.
- 24. Cao X, Shen D, Patel MM, et al. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study[J]. Pathol Int, 2011, 61(9): 528-535. DOI: 10.1111/j.1440-1827.2011.02695.x.
- 25. Guedes J, Cardoso AL, Pedroso de lima MC. Involvement of microRNA in microglia-mediated immune response[J/OL]. Clin Dev Immunol, 2013, 2013(4): 186872[2013-05-23]. http://europepmc.org/article/MED/23762086. DOI: 10.1155/2013/186872.
- 26. Yan L, Lee S, Lazzaro DR, et al. Single and compound knock-outs of microRNA (miRNA)-155 and its angiogenic gene target CCN1 in mice alter vascular and neovascular growth in the retina via resident microglia[J]. J Biol Chem, 2015, 290(38): 23264-23281. DOI: 10.1074/jbc.M115.646950.
- 27. Zhang P, Wang H, Luo X, et al. MicroRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization[J]. Inflammation, 2018, 41(1): 143-153. DOI: 10.1007/s10753-017-0672-8.
- 28. Sene A, Khan AA, Cox D, et al. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration[J]. Cell Metab, 2013, 17(4): 549-561. DOI: 10.1016/j.cmet.2013.03.009.
- 29. Ayaz L, Dinç E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress[J]. Cutan Ocul Toxicol, 2018, 37(2): 121-126. DOI: 10.1080/15569527.2017.1355314.
- 30. Lin H, Qian J, Castillo AC, et al. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6308-6314. DOI: 10.1167/iovs.10-6632.
- 31. Bo T, Maidana DE, Bernard D, et al. MiR-17-3p exacerbates oxidative damage in human retinal pigment epithelial cells[J/OL]. PLoS One, 2016, 11(8): 0160887[2016-08-09]. http://europepmc.org/article/MED/27505139. DOI: 10.1371/journal.pone.0160887.
- 32. Tong N, Jin R, Zhou Z, et al. Involvement of microRNA-34a in age-related susceptibility to oxidative stress in ARPE-19 cells by targeting the silent mating type information regulation 2 homolog 1/p66shc pathway: implications for age-related macular degeneration[J]. Front Aging Neurosci, 2019, 11: 137. DOI: 10.3389/fnagi.2019.00137.
- 33. Shao Y, Yu Y, Zhou Q, et al. Inhibition of miR-134 protects against hydrogen peroxide-induced apoptosis in retinal ganglion cells[J]. J Mol Neurosci, 2015, 56(2): 461-471. DOI: 10.1007/s12031-015-0522-9.
- 34. Li W. Phagocyte dysfunction, tissue aging and degeneration[J]. Ageing Res Rev, 2013, 12(4): 1005-1012. DOI: 10.1016/j.arr.2013.05.006.
- 35. Marion S, Hoffmann E, Holzer D, et al. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion[J]. Traffic, 2011, 12(4): 421-437. DOI: 10.1111/j.1600-0854.2011.01158.x.
- 36. Erwig LP, McPhilips KA, Wynes MW, et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins[J]. Proc Natl Acad Sci USA, 2006, 103(34): 12825-12830. DOI: 10.1073/pnas.0605331103.
- 37. Murad N, Kokkinaki M, Gunawardena N, et al. MiR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration[J]. FEBS J, 2014, 281(23): 5251-5264. DOI: 10.1111/febs.13066.
- 38. Shinohara M, Fujioka S, Murray ME, et al. Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer’s disease[J]. Brain, 2014, 137(Pt 5): 1533-1549. DOI: 10.1093/brain/awu046.
- 39. Bhattacharjee S, Zhao Y, Dua P, et al. MicroRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration[J/OL]. PLoS One, 2016, 11(3): 0150211[2016-03-07]. http://europepmc.org/article/MED/26949937. DOI: 10.1371/journal.pone.0150211.
- 40. Wang L, Lee AY, Wigg JP, et al. MiR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model[J]. Int J Mol Sci, 2016, 17(6): 895. DOI: 10.3390/ijms17060895.
- 41. Gong Q, Xie J, Liu Y, et al. Differentially expressed microRNAs in the development of early diabetic retinopathy[J/OL]. J Diabetes Res, 2017, 2017: 4727942[2017-06-15]. http://europepmc.org/article/MED/28706953. DOI: 10.1155/2017/4727942.
- 42. Mirzoeva S, Franzen CA, Pelling JC. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3-and Src-dependent mechanism[J]. Mol Carcinog, 2014, 53(8): 598-609. DOI: 10.1002/mc.22005.
- 43. Wang L, Lee AY, Wigg JP, et al. MiRNA involvement in angiogenesis in age-related macular degeneration[J]. J Physiol Biochem, 2016, 72(4): 583-592. DOI: 10.1007/s13105-016-0496-2.
- 44. Cai J, Yin G, Lin B, et al. Roles of NFκB-miR-29s-MMP-2 circuitry in experimental choroidal neovascularization[J]. J Neuroinflammation, 2014, 11: 88. DOI: 10.1186/1742-2094-11-88.
- 45. Gao F, Sun M, Gong Y, et al. MicroRNA-195a-3p inhibits angiogenesis by targeting MMP2 in murine mesenchymal stem cells[J]. Mol Reprod Dev, 2016, 83(5): 413-423. DOI: 10.1002/mrd.22638.
- 46. Zhou Q, Anderson C, Zhang H, et al. Repression of choroidal neovascularization through actin cytoskeleton pathways by microRNA-24[J]. Mol Ther, 2014, 22(2): 378-389. DOI: 10.1038/mt.2013.243.
- 47. Liu CH, Sun Y, Li J, et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization[J]. Proc Natl Acad Sci USA, 2015, 112(39): 12163-12168. DOI: 10.1073/pnas.1508426112.
- 48. Che P, Liu J, Shan Z, et al. MiR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation[J]. Aging Cell, 2014, 13(5): 926-934. DOI: 10.1111/acel.12252.
- 49. Svensson D, Gidlöf O, Turczyńska KM, et al. Inhibition of microRNA-125a promotes human endothelial cell proliferation and viability through an antiapoptotic mechanism[J]. J Vasc Res, 2014, 51(3): 239-245. DOI: 10.1159/000365551.
- 50. Muramatsu F, Kidoya H, Naito H, et al. MicroRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin[J]. Oncogene, 2013, 32(4): 414-421. DOI: 10.1038/onc.2012.68.
- 51. Natoli R, Fernando N. MicroRNA as therapeutics for age-related macular degeneration[J]. Adv Exp Med Biol, 2018, 1074: 37-43. DOI: 10.1007/978-3-319-75402-4_5.
- 52. Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells[J]. J Biol Chem, 2010, 285(23): 17442-17452. DOI: 10.1074/jbc.M110.107821.
- 53. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?[J]. Circ Res, 2012, 110(3): 483-495. DOI: 10.1161/CIRCRESAHA.111.247452.
- 54. Berber P, Grassmann F, Kiel C, et al. An eye on age-related macular degeneration: the role of microRNAs in disease pathology[J]. Mol Diagn Ther, 2017, 21(1): 31-43. DOI: 10.1007/s40291-016-0234-z.