1. |
Loma DS. Practical observations on the principal diseases of the eyes[M]. Pravia: Presso Baldassare Comino, 1801: 215-228.
|
2. |
Curtin BJ. The posterior staphyloma of pathologic myopia[J]. Trans Am Ophthalmol Soc, 1977, 75: 67-86.
|
3. |
Samarawickrama C, Mitchell P, Tong L, et al. Myopia-related optic disc and retinal changes in adolescent children from Singapore[J]. Ophthalmology, 2011, 118(10): 2050-2057. DOI: 10.1016/j.ophtha.2011.02.040.
|
4. |
Numa S, Yamashiro K, Wakazono T, et al. Prevalence of posterior staphyloma and factors associated with its shape in the Japanese population[J/OL]. Sci Rep, 2018, 8(1): 4594[2018-03-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854606/. DOI: 10.1038/s41598-018-22759-y.
|
5. |
Ohno-Matsui K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging[J]. Ophthalmology, 2014, 121(9): 1798-1809. DOI: 10.1016/j.ophtha.2014.03.035.
|
6. |
Hsiang HW, Ohno-Matsui K, Shimada N, et al. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia[J]. Am J Ophthalmol, 2008, 146(1): 102-110. DOI: 10.1016/j.ajo.2008.03.010.
|
7. |
Zheng F, Wong CW, Sabanayagam C, et al. Prevalence, risk factors and impact of posterior staphyloma diagnosed from wide-field optical coherence tomography in Singapore adults with high myopia[J/OL]. Acta Ophthalmol, 2020[2020-06-29]. https://pubmed.ncbi.nlm.nih.gov/32602252/.DOI: 10.1111/aos.14527. [published online ahead of print].
|
8. |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. DOI: 10.1016/j.ophtha.2016.01.006.
|
9. |
Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971–1972 and 1994–2004[J]. Arch Ophthalmol, 2009, 127(12): 1632-1639. DOI: 10.1001/archophthalmol.2009.303.
|
10. |
Kempen JH, Mitchell P, Lee KE, et a1. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia[J]. Arch Ophthalmol, 2004, 122(4): 495-505. DOI: 10.1001/archopht.122.4.495.
|
11. |
Pan CW, Zheng YF, Anuar AR, et a1. Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2590-2598. DOI: 10.1167/iovs.13-11725.
|
12. |
Gao LQ, Liu w, Liang YB, et a1. Prevalence and characteristics of myopic retinopathy in a rural Chinese adult population: the Handan eye study[J]. Arch Ophthalmol, 2011, 129(9): 1199-1204. DOI: 10.1001/archophthalmol.2011.230.
|
13. |
Anderson RL, Epstein GA, Dauer EA. Computed tomographic diagnosis of posterior ocular staphyloma[J]. AINR Am J Neuroradiol, 1983, 4(1): 90-91.
|
14. |
Malhotra A, Minja FJ, Crum A, et al. Ocular anatomy and cross-sectional imaging of the eye[J]. Semin Ultrasound CT MR, 2011, 32(1): 2-13. DOI: 10.1053/j.sult.2010.10.009.
|
15. |
Yu X, Ma W, Liu B, et al. Morphological analysis and quantitative evaluation of myopic maculopathy by three-dimensional magnetic resonance imaging[J]. Eye (Lond), 2018, 32(4): 782-787. DOI: 10.1038/eye.2017.263.
|
16. |
Guo X, Xiao O, Chen Y, et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: the zhongshan ophthalmic center–Brien Holden vision institute high myopia cohort study[J]. Ophthalmology, 2017, 124(5): 679-687. DOI: 10.1016/j.ophtha.2017.01.009.
|
17. |
Miyake M, Yamashiro K, Akagi-Kurashige Y, et al. Analysis of fundus shape in highly myopic eyes by using curvature maps constructed from optical coherence tomography[J/OL]. PLoS One, 2014, 9(9): e107923[2014-09-26]. https://pubmed.ncbi.nlm.nih.gov/32602252/. DOI: 10.1371/journal.pone.0107923.
|
18. |
Shinohara K, Shimada N, Moriyama M, et al. Posterior staphylomas in pathologic myopia imaged by widefield optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3750-3758. DOI: 10.1167/iovs.17-22319.
|
19. |
Tanaka N, Shinohara K, Yokoi T, et al. Posterior staphylomas and scleral curvature in highly myopic children and adolescents investigated by ultra-widefield optical coherence tomography[J/OL]. PLoS One, 2019, 14(6): e0218107[2019-06-10]. https://pubmed.ncbi.nlm.nih.gov/32602252/. DOI: 10.1371/journal.pone.0218107.
|
20. |
Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma[J]. Am J Ophthalmol, 1997, 123(2): 181-187. DOI: 10.1016/s0002-9394(14)71034-7.
|
21. |
Maruko I, Iida T, Sugano Y, et al. Morphologic analysis in pathologic myopia using high-penetration optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3834-3838. DOI: 10.1167/iovs.12-9811.
|
22. |
Hayashi M, Ito Y, Takahashi A, et al. Scleral thickness in highly myopic eyes measured by enhanced depth imaging optical coherence tomography[J]. Eye (Lond), 2013, 27(3): 410-417. DOI: 10.1038/eye.2012.289.
|
23. |
Park JH, Choi KR, Kim CY, et al. The height of the posterior staphyloma and corneal hysteresis is associated with the scleral thickness at the staphyloma region in highly myopic normal-tension glaucoma eyes[J]. Br J Ophthalmol, 2016, 100(9): 1251-1256. DOI: 10.1136/bjophthalmol-2015-307292.
|
24. |
Curtin BJ, Iwamoto T, Renaldo DP. Normal and staphylomatous sclera of high myopia: an electron microscopic study[J]. Arch Ophthalmol, 1979, 97(5): 912-915. DOI: 10.1001/archopht.1979.01020010470017.
|
25. |
Wu H, Chen W, Qu J, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): 7091-7100. DOI: 10.1073/pnas.1721443115.
|
26. |
Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia[J]. Prog Retin Eye Res, 2019, 70: 99-109. DOI: 10.1016/j.preteyeres.2018.12.001.
|
27. |
Ohno-Matsui K, Akiba M, Modegi T, et al. Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6046-6061. DOI: 10.1167/iovs.12-10161.
|
28. |
Xu X, Fang Y, Yokoi T, et al. Posterior staphylomas in eyes with retinitis pigmentosa without high myopia[J]. Retina, 2019, 39(7): 1299-1304. DOI: 10.1097/IAE.0000000000002180.
|
29. |
Jonas JB, Panda-Jonas S. Secondary Bruch's membrane defects and scleral staphyloma in toxoplasmosis[J]. Acta Ophthalmol, 2016, 94(7): 664-666. DOI: 10.1111/aos.13027.
|
30. |
Jonas JB, Holbach L, Panda-Jonas S. Bruch's membrane thickness in high myopia[J]. Acta Ophthalmol, 2015, 92(6): 470-474. DOI: 10.1111/aos.12372.
|
31. |
Xue A, Bao F, Zheng L, et al. Posterior scleral reinforcement on progressive high myopic young patients[J]. Optom Vis Sci, 2014, 91(4): 412-418. DOI: 10.1097/OPX.0000000000000201.
|
32. |
Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for posterior scleral contraction/rein-forcement to fight progressive myopia[J]. Invest Ophthalmol Vis Sc, 2018, 59(8): 3564-3573. DOI: 10.1167/iovs.17-23707.
|
33. |
Miao Z, Li L, Meng X, et al. Modified posterior scleral reinforcement as a treatment for high myopia in children and its therapeutic effect[J/OL]. Biomed Res Int, 2019, 2019: 5185780[2019-01-22]. https://pubmed.ncbi.nlm.nih.gov/32602252/. DOI: 10.1155/2019/5185780.
|
34. |
Hu H, Zhao G, Wu R, et al. Axial length/corneal radius of curvature ratio assessment of posterior sclera reinforcement for pathologic myopia[J]. Ophthalmologica, 2017, 239(2-3): 128-132. DOI: 10.1159/000484485.
|
35. |
关微, 李秀娟, 张金嵩. 变性近视后巩膜加固术随访5年的效果分析[J]. 中华眼外伤职业眼病杂志, 2019, 41(5): 344-348. DOI: 10.3760/cma.j.issn.2095-1477.2019.05.005.Guan W, Li XJ, Zhang JS. Five years follow-up analysis of the efficacy of posterior scleral reinforcement for degenerative myopia[J]. Chin J Ocul Trauma Occupat Eye Dis, 2019, 41(5): 344-348. DOI: 10.3760/cma.j.issn.2095-1477.2019.05.005.
|
36. |
高锦展, 何利, 陈梦平, 等. 巩膜加固术控制青少年高度近视发展的Meta分析[J]. 中国斜视与小儿眼科杂志, 2019, 27(2): 26-27. DOI: 10.3969/J.ISSN.1005-328X.2019.02.009.Gao JZ, He L, Chen MP, et al. The efficacy and safety of posterior scleral reinforcement for high myopia in children: a meta-analysis[J]. Chinese Journal of Strabismus & Pediatric Ophthalmology, 2019, 27(2): 26-27. DOI: 10.3969/J.ISSN.1005-328X.2019.02.009.
|
37. |
Wollensak G, Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA[J]. Acta Ophthalmol Scand, 2005, 83(4): 477-482. DOI: 10.1111/j.1600-0420.2005.00447.x.
|
38. |
Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit sclera after collagen crosslinking using riboflavin and ultraviolet A (UVA)[J]. Acta ophthalmologica, 2009, 87(2): 193-198. DOI: 10.1111/j.1755-3768.2008.01229.x.
|
39. |
Karl A, Makarov FN, Koch C, et al. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(8): 1567-1577. DOI: 10.1007/s00417-016-3393-z.
|
40. |
Campbell IC, Hannon BG, Read AT, et al. Quantification of the efficacy of collagen cross-linking agents to induce stiffening of rat sclera[J/OL]. J R Soc Interface, 2017, 14(129): 20170014[2017-05-14]. https://pubmed.ncbi.nlm.nih.gov/32602252/. DOI: 10.1098/rsif.2017.0014.
|
41. |
Kim TG, Kim W, Choi S, et al. Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: future treatment for myopia progression[J/OL]. PLoS One, 2019, 14(5): e0216425[2019-05-13]. https://pubmed.ncbi.nlm.nih.gov/31083660/. DOI: 10.1371/journal.pone.0216425.
|
42. |
Lin X, Naidu RK, Dai J, et al. Scleral cross-linking using glyceraldehyde for the prevention of axial elongation in the rabbit: blocked axial elongation and altered scleral microstructure scleral cross-linking using glyceraldehyde[J]. Curr Eye Res, 2019, 44(2): 162-171. DOI: 10.1080/02713683.2018.1522647.
|
43. |
Kimball EC, Nguyen C, Steinhart MR, et al. Experimental scleral cross-linking increases glaucoma damage in a mouse model[J]. Exp Eye Res, 2014, 128: 129-140. DOI: 10.1016/j.exer.2014.08.016.
|
44. |
Iribarren R, Iribarren G, Szwajkowska M, et al. The role of atropine eye drops in myopia control[J]. Curr Pharm Des, 2015, 21(32): 4718-4730. DOI: 10.2174/1381612821666150909095403.
|
45. |
Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning[J]. Ophthalmic Physiol Opt, 2013, 33(3): 245-256. DOI: 10.1111/opo.12054.
|
46. |
Shinohara K, Yoshida T, Liu H, et al. Establishment of novel therapy to reduce progression of myopia in rats with experimental myopia by fibroblast transplantation on sclera[J]. J Tissue Eng Regen Med, 2018, 12(1): 451-461. DOI: 10.1002/term.2275.
|
47. |
Ohno-Matsui K, Alkabes M, Salinas C, et al. Features of posterior staphylomas analyzed in wide-field fundus images in patients with unilateral and bilateral pathologic myopia[J]. Retina, 2016, 37(3): 477-486. DOI: 10.1097/IAE.0000000000001327.
|
48. |
Lezrek O, Daoudi C, Ez-Zahraoui M, et al. Posterior staphyloma in a hyperopic eye[J]. J Fr Ophtalmol, 2017, 40(10): 906-907. DOI: 10.1016/j.jfo.2017.03.019.
|
49. |
Scott A, Kashani S, Towler HM. Progressive myopia due to posterior staphyloma in type Ⅰ osteogenesis imperfecta[J]. Int Ophthalmol, 2005, 26(4-5): 167-169. DOI: 10.1007/s10792-006-9012-y.
|
50. |
Lee S, Schimmenti LA, King RA, et al. Posterior staphyloma in oculocutaneous albinism: another possible cause of reduced visual acuity[J]. J AAPOS, 2015, 19(6): 562-564. DOI: 10.1016/j.jaapos.2015.06.009.
|
51. |
Reddy MA, Francis PJ, Berry V, et al. A clinical and molecular genetic study of a rare dominantly inherited syndrome (MRCS) comprising of microcornea, rod-cone dystrophy, cataract, and posterior staphyloma[J]. Br J Ophthalmol, 2003, 87(2): 197-202. DOI: 10.1136/bjo.87.2.197.
|
52. |
Kuniyoshi K, Sakuramoto H, Yoshitake K, et al. Longitudinal clinical course of three Japanese patients with leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation[J]. Doc Ophthalmol, 2014, 128(3): 219-228. DOI: 10.1007/s10633-014-9436-z.
|
53. |
Zhu XJ, He W, Du Y, et al. Presence of posterior staphyloma in congenital cataract children[J]. Curr Eye Res, 2019, 44(12): 1319-1324. DOI: 10.1080/02713683.2019.1637437.
|