- Department of Ophthalmology, Hospital of Chengdu University of Traditionl Chinese Medicine, Chengdu 610075, China;
Retinitis pigmentosa (RP) is an inherited retinal disease characterized by degeneration of retinal pigment epithelial cells. Precision medicine is a new medical model that applies modern genetic technology, combining living environment, clinical data of patients, molecular imaging technology and bio-information technology to achieve accurate diagnosis and treatment, and establish personalized disease prevention and treatment model. At present, precise diagnosis of RP is mainly based on next-generation sequencing technology and preimplantation genetic diagnosis, while precise therapy is mainly reflected in gene therapy, stem cell transplantation and gene-stem cell therapy. Although the current research on precision medicine for RP has achieved remarkable results, there are still many problems in the application process that is needed close attention. For instance, the current gene therapy cannot completely treat dominant or advanced genetic diseases, the safety of gene editing technology has not been solved, the cells after stem cell transplantation cannot be effectively integrated with the host, gene sequencing has not been fully popularized, and the big data information platform is imperfect. It is believed that with the in-depth research of gene sequencing technology, regenerative medicine and the successful development of clinical trials, the precision medicine for RP will be gradually improved and is expected to be applied to improve the vision of patients with RP in the future.
Citation: Huang Hui, Zheng Yanlin. Application of precision medicine in diagnosis and treatment of retinitis pigmentosa. Chinese Journal of Ocular Fundus Diseases, 2021, 37(8): 644-650. doi: 10.3760/cma.j.cn511434-20200801-00367 Copy
1. | Campochiaro PA, Mir TA. The mechanism of cone cell death in retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 62: 24-37. DOI: 10.1016/j.preteyeres.2017.08.004. |
2. | Strianese O, Rizzo F, Ciccarelli M, et al. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease[J/OL]. Genes (Basel), 2020, 11(7): 747[2020-07-06]. https://pubmed.ncbi.nlm.nih.gov/32640513/. DOI: 10.3390/genes11070747. |
3. | Liu X, Luo X, Jiang C, et al. Difficulties and challenges in the development of precision medicine[J]. Clin Genet, 2019, 95(5): 569-574. DOI: 10.1111/cge.13511. |
4. | Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa[J/OL]. Int J Mol Sci, 2019, 20(10): 2542[2019-05-23]. https://pubmed.ncbi.nlm.nih.gov/31126147/. DOI: 10.3390/ijms20102542. |
5. | Sharon D, Ben-Yosef T, Goldenberg-Cohen N, et al. A nationwide genetic analysis of inherited retinal diseases in israel as assessed by the Israeli inherited retinal disease consortium (IIRDC)[J]. Hum Mutat, 2020, 41(1): 140-149. DOI: 10.1002/humu.23903. |
6. | Wang J, Xu D, Zhu T, et al. Identification of two novel RHO mutations in Chinese retinitis pigmentosa patients[J/OL]. Exp Eye Res, 2019, 188: 107726[2019-07-15]. https://pubmed.ncbi.nlm.nih.gov/31319082/. DOI: 10.1016/j.exer.2019.107726. |
7. | Meng XH, He Y, Zhao TT, et al. Novel mutations in CYP4V2 in Bietti corneoretinal crystalline dystrophy: next-generation sequencing technology and genotype-phenotype correlations[J]. Mol Vis, 2019, 25: 654-662. |
8. | Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa[J]. Mol Ther, 2017, 25(8): 1854-1865. DOI: 10.1016/j.ymthe.2017.05.005. |
9. | Zhu T, Chen DF, Wang L, et al. USH2A variants in Chinese patients with Usher syndrome type Ⅱ and non-syndromic retinitis pigmentosa[J]. Br J Ophthalmol, 2021, 105(5): 694-703. DOI: 10.1136/bjophthalmol-2019-315786. |
10. | Ece Solmaz A, Onay H, Atik T, et al. Targeted multi-gene panel testing for the diagnosis of Bardet Biedl syndrome: identification of nine novel mutations across BBS1, BBS2, BBS4, BBS7, BBS9, BBS10 genes[J]. Eur J Med Genet, 2015, 58(12): 689-694. DOI: 10.1016/j.ejmg.2015.10.011. |
11. | Ge Z, Bowles K, Goetz K, et al. NGS-based molecular diagnosis of 105 eyeGENE(®) probands with retinitis pigmentosa[J/OL]. Sci Rep, 2015, 5: 18287[2015-12-15]. https://pubmed.ncbi.nlm.nih.gov/26667666/. DOI: 10.1038/srep18287. |
12. | Huang H, Chen Y, Chen H, et al. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa[J/OL]. PLoS One, 2018, 13: e0185237[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29641573/. DOI: 10.1371/journal.pone.0185237. |
13. | Vincent AT, Derome N, Boyle B, et al. Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money[J]. J Microbiol Methods, 2017, 138: 60-71. DOI: 10.1016/j.mimet.2016.02.016. |
14. | Midha MK, Wu M, Chiu KP. Long-read sequencing in deciphering human genetics to a greater depth[J]. Hum Genet, 2019, 138(11-12): 1201-1215. DOI: 10.1007/s00439-019-02064-y. |
15. | Chang YS, Huang HD, Yeh KT, et al. Evaluation of whole exome sequencing by targeted gene sequencing and Sanger sequencing[J]. Clin Chim Acta, 2017, 471: 222-232. DOI: 10.1016/j.cca.2017.06.015. |
16. | Pei S, Liu T, Ren X, et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis[J/OL]. Brief Bioinformatics, 2021, 22(3): bbaa148[2021-05-20]. https://pubmed.ncbi.nlm.nih.gov/32698196/. DOI: 10.1093/bib/bbaa148. |
17. | Persani L, de Filippis T, Colombo C, et al. Genetics in endocrinology: genetic diagnosis of endocrine diseases by NGS: novel scenarios and unpredictable results and risks[J]. Eur J Endocrinol, 2018, 179(3): R111-R123. DOI: 10.1530/EJE-18-0379. |
18. | Meienberg J, Bruggmann R, Oexle K, et al. Clinical sequencing: is WGS the better WES?[J]. Human Genetics, 2016, 135(3): 359-362. DOI: 10.1007/s00439-015-1631-9. |
19. | Lai TY, Ng TK, Tam PO, et al. Genotype phenotype analysis of Bietti’s crystalline dystrophy in patients with CYP4V2 mutations[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5212-5220. DOI: 10.1167/iovs.07-0660. |
20. | Rossi S, Testa F, Li A, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients[J]. Br J Ophthalmol, 2013, 97(2): 174-179. DOI: 10.1136/bjophthalmol-2012-302469. |
21. | Halford S, Liew G, Mackay DS, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy[J]. Ophthalmology, 2014, 121(6): 1174-1184. DOI: 10.1016/j.ophtha.2013.11.042. |
22. | Simpson JL, Kuliev A, Rechitsky S. Overview of preimplantation genetic diagnosis (PGD): historical perspective and future direction[J]. Methods Mol Biol, 2019, 1885: 23-43. DOI: 10.1007/978-1-4939-8889-1_2. |
23. | Huang X, Liu Y, Yu X, et al. The clinical application of preimplantation genetic diagnosis for X-linked retinitis pigmentosa[J]. J Assist Reprod Genet, 2019, 36(5): 989-994. DOI: 10.1007/s10815-019-01434-9. |
24. | DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina[J]. J Clin Invest, 2018, 128(6): 2177-2188. DOI: 10.1172/JCI120429. |
25. | Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2231-2239. DOI: 10.1056/NEJMoa0802268. |
26. | Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med, 2015, 372(20): 1887-1897. DOI: 10.1056/NEJMoa1414221. |
27. | Botta S, Marrocco E. de Prisco N, et al. Rhodopsin targeted transcriptional silencing by DNA-binding[J/OL]. Elife, 2016, 5: e12242[2016-03-14]. https://pubmed.ncbi.nlm.nih.gov/26974343/. DOI: 10.7554/eLife.12242. |
28. | Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector[J/OL]. Proc Natl Acad Sci USA, 2018, 115(36): E8547-E8556[2018-08-20]. https://pubmed.ncbi.nlm.nih.gov/30127005/. DOI: 10.1073/pnas.1805055115. |
29. | Dang Y, Loewen R, Parikh HA, et al. Gene transfer to the outflow tract[J]. Exp Eye Res, 2017, 158: 73-84. DOI: 10.1016/j.exer.2016.04.023. |
30. | DiCarlo JE, Deeconda A, Tsang SH. Viral vectors, engineered cells and the CRISPR revolution[J]. Adv Exp Med Biol, 2017, 1016: 3-27. DOI: 10.1007/978-3-319-63904-8_1. |
31. | Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy[J]. Hum Gene Ther, 2017, 28(11): 982-987. DOI: 10.1089/hum.2017.164. |
32. | Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8. |
33. | Takahashi Y, Chen Q, Rajala RVS, et al. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization[J]. FEBS Lett, 2015, 589(10): 1143-1149. DOI: 10.1016/j.febslet.2015.03.010. |
34. | Jiang DJ, Xu CL, Tsang SH. Revolution in gene medicine therapy and genome surgery[J/OL]. Genes (Basel), 2018, 9(12): 575[2018-11-26]. https://pubmed.ncbi.nlm.nih.gov/30486314/. DOI: 10.3390/genes9120575. |
35. | Little CW, Castillo B, DiLoret DA, et al. Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina[J]. Invest Ophthamol Vis Sci, 1996, 37(1): 204-211. |
36. | Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J]. Cloning Stem Cells, 2006, 8(3): 189-199. DOI: 10.1089/clo.2006.8.189. |
37. | Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2. |
38. | Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3. |
39. | Chung S, Rho S, Kim G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury[J]. Int J Mol Med, 2016, 37(5): 1170-1180. DOI: 10.3892/ijmm.2016.2532. |
40. | Roth S, Dreixler JC, Mathew B, et al. Hypoxic-preconditioned bone marrow stem cell medium significantly improves outcome after retinal ischemia in rats[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3522-3532. DOI: 10.1167/iovs.15-17381. |
41. | Leow SN, Luu CD, Hairul Nizam MH, et al. Safety and efficacy of human Wharton's Jelly-Derived mesenchymal stem cells therapy for retinal degeneration[J/OL]. PLoS One, 2015, 10(6): e0128973[2015-06-24]. https://pubmed.ncbi.nlm.nih.gov/26107378/. DOI: 10.1371/journal.pone.0128973. |
42. | Tzameret A, Sher I, Belkin M, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration[J]. Stem Cell Res, 2015, 15(2): 387-394. DOI: 10.1016/j.scr.2015.08.007. |
43. | Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD[J]. N Engl J Med, 2017, 376(11): 1047-1053. DOI: 10.1056/NEJMoa1609583. |
44. | Satarian L, Nourinia R, Safi S, et al. Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa: a safety study[J]. J Ophthalmic Vis Res, 2017, 12(1): 58-64. DOI: 10.4103/2008-322X.200164. |
45. | Zou T, Gao L, Zeng Y, et al. Organoid-derived C-Kit/SSEA4 human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents[J/OL]. Nat Commun, 2019, 10(1): 1205[2019-03-14]. https://pubmed.ncbi.nlm.nih.gov/30872578/. DOI: 10.1038/s41467-019-08961-0. |
46. | Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients[J/OL]. Stem Cell Res Ther, 2017, 8(1): 209[2017-09-29]. https://pubmed.ncbi.nlm.nih.gov/28962643/. DOI: 10.1186/s13287-017-0661-8. |
47. | Terrell D, Comander J. Current stem-cell approaches for the treatment of inherited retinal degenerations[J]. Semin Ophthalmol, 2019, 34(4): 287-292. DOI: 10.1080/08820538.2019.1620808. |
48. | Bassuk AG, Zheng A, Li Y, et al. Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells[J/OL]. Sci Rep, 2016, 6: 19969[2016-01-27]. https://pubmed.ncbi.nlm.nih.gov/26814166/. DOI: 10.1038/srep19969. |
49. | Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003. |
50. | Gagliardi G, Ben M'Barek K, Chaffiol A, et al. Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids[J]. Stem Cell Reports, 2018, 11(3): 665-680. DOI: 10.1016/j.stemcr.2018.07.005. |
51. | Ben M'Barek K, Bertin S, Brazhnikova E, et al. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents[J/OL]. Biomaterials, 2020, 230: 119603[2019-11-06]. https://pubmed.ncbi.nlm.nih.gov/31732225/. DOI: 10.1016/j.biomaterials.2019.119603. |
52. | Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032. |
53. | Zhu J, Cifuentes H, Reynolds J, et al. Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina[J]. Cell Stem Cell, 2017, 20(3): 374-384. DOI: 10.1016/j.stem.2016.11.019. |
54. | Morizur L, Herardot E, Monville C, et al. Human pluripotent stem cells: a toolbox to understand and treat retinal degeneration[J/OL]. Mol Cell Neurosci, 2020, 107: 103523[2020-07-04]. https://pubmed.ncbi.nlm.nih.gov/32634576/. DOI: 10.1016/j.mcn.2020.103523. |
55. | West EL, Gonzalez-Cordero A, Hippert C, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors[J]. Stem Cells, 2012, 30(7): 1424-1435. DOI: 10.1002/stem.1123. |
56. | Ben M'Barek K, Monville C. Cell therapy for retinal dystrophies: from cell suspension formulation to complex retinal tissue bioengineering[J/OL]. Stem Cells Int, 2019, 2019: 4568979[2019-01-23]. https://pubmed.ncbi.nlm.nih.gov/30809263/. DOI: 10.1155/2019/4568979. |
- 1. Campochiaro PA, Mir TA. The mechanism of cone cell death in retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 62: 24-37. DOI: 10.1016/j.preteyeres.2017.08.004.
- 2. Strianese O, Rizzo F, Ciccarelli M, et al. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease[J/OL]. Genes (Basel), 2020, 11(7): 747[2020-07-06]. https://pubmed.ncbi.nlm.nih.gov/32640513/. DOI: 10.3390/genes11070747.
- 3. Liu X, Luo X, Jiang C, et al. Difficulties and challenges in the development of precision medicine[J]. Clin Genet, 2019, 95(5): 569-574. DOI: 10.1111/cge.13511.
- 4. Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa[J/OL]. Int J Mol Sci, 2019, 20(10): 2542[2019-05-23]. https://pubmed.ncbi.nlm.nih.gov/31126147/. DOI: 10.3390/ijms20102542.
- 5. Sharon D, Ben-Yosef T, Goldenberg-Cohen N, et al. A nationwide genetic analysis of inherited retinal diseases in israel as assessed by the Israeli inherited retinal disease consortium (IIRDC)[J]. Hum Mutat, 2020, 41(1): 140-149. DOI: 10.1002/humu.23903.
- 6. Wang J, Xu D, Zhu T, et al. Identification of two novel RHO mutations in Chinese retinitis pigmentosa patients[J/OL]. Exp Eye Res, 2019, 188: 107726[2019-07-15]. https://pubmed.ncbi.nlm.nih.gov/31319082/. DOI: 10.1016/j.exer.2019.107726.
- 7. Meng XH, He Y, Zhao TT, et al. Novel mutations in CYP4V2 in Bietti corneoretinal crystalline dystrophy: next-generation sequencing technology and genotype-phenotype correlations[J]. Mol Vis, 2019, 25: 654-662.
- 8. Fischer MD, McClements ME, Martinez-Fernandez de la Camara C, et al. Codon-optimized RPGR improves stability and efficacy of AAV8 gene therapy in two mouse models of X-linked retinitis pigmentosa[J]. Mol Ther, 2017, 25(8): 1854-1865. DOI: 10.1016/j.ymthe.2017.05.005.
- 9. Zhu T, Chen DF, Wang L, et al. USH2A variants in Chinese patients with Usher syndrome type Ⅱ and non-syndromic retinitis pigmentosa[J]. Br J Ophthalmol, 2021, 105(5): 694-703. DOI: 10.1136/bjophthalmol-2019-315786.
- 10. Ece Solmaz A, Onay H, Atik T, et al. Targeted multi-gene panel testing for the diagnosis of Bardet Biedl syndrome: identification of nine novel mutations across BBS1, BBS2, BBS4, BBS7, BBS9, BBS10 genes[J]. Eur J Med Genet, 2015, 58(12): 689-694. DOI: 10.1016/j.ejmg.2015.10.011.
- 11. Ge Z, Bowles K, Goetz K, et al. NGS-based molecular diagnosis of 105 eyeGENE(®) probands with retinitis pigmentosa[J/OL]. Sci Rep, 2015, 5: 18287[2015-12-15]. https://pubmed.ncbi.nlm.nih.gov/26667666/. DOI: 10.1038/srep18287.
- 12. Huang H, Chen Y, Chen H, et al. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa[J/OL]. PLoS One, 2018, 13: e0185237[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29641573/. DOI: 10.1371/journal.pone.0185237.
- 13. Vincent AT, Derome N, Boyle B, et al. Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money[J]. J Microbiol Methods, 2017, 138: 60-71. DOI: 10.1016/j.mimet.2016.02.016.
- 14. Midha MK, Wu M, Chiu KP. Long-read sequencing in deciphering human genetics to a greater depth[J]. Hum Genet, 2019, 138(11-12): 1201-1215. DOI: 10.1007/s00439-019-02064-y.
- 15. Chang YS, Huang HD, Yeh KT, et al. Evaluation of whole exome sequencing by targeted gene sequencing and Sanger sequencing[J]. Clin Chim Acta, 2017, 471: 222-232. DOI: 10.1016/j.cca.2017.06.015.
- 16. Pei S, Liu T, Ren X, et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis[J/OL]. Brief Bioinformatics, 2021, 22(3): bbaa148[2021-05-20]. https://pubmed.ncbi.nlm.nih.gov/32698196/. DOI: 10.1093/bib/bbaa148.
- 17. Persani L, de Filippis T, Colombo C, et al. Genetics in endocrinology: genetic diagnosis of endocrine diseases by NGS: novel scenarios and unpredictable results and risks[J]. Eur J Endocrinol, 2018, 179(3): R111-R123. DOI: 10.1530/EJE-18-0379.
- 18. Meienberg J, Bruggmann R, Oexle K, et al. Clinical sequencing: is WGS the better WES?[J]. Human Genetics, 2016, 135(3): 359-362. DOI: 10.1007/s00439-015-1631-9.
- 19. Lai TY, Ng TK, Tam PO, et al. Genotype phenotype analysis of Bietti’s crystalline dystrophy in patients with CYP4V2 mutations[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5212-5220. DOI: 10.1167/iovs.07-0660.
- 20. Rossi S, Testa F, Li A, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients[J]. Br J Ophthalmol, 2013, 97(2): 174-179. DOI: 10.1136/bjophthalmol-2012-302469.
- 21. Halford S, Liew G, Mackay DS, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy[J]. Ophthalmology, 2014, 121(6): 1174-1184. DOI: 10.1016/j.ophtha.2013.11.042.
- 22. Simpson JL, Kuliev A, Rechitsky S. Overview of preimplantation genetic diagnosis (PGD): historical perspective and future direction[J]. Methods Mol Biol, 2019, 1885: 23-43. DOI: 10.1007/978-1-4939-8889-1_2.
- 23. Huang X, Liu Y, Yu X, et al. The clinical application of preimplantation genetic diagnosis for X-linked retinitis pigmentosa[J]. J Assist Reprod Genet, 2019, 36(5): 989-994. DOI: 10.1007/s10815-019-01434-9.
- 24. DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina[J]. J Clin Invest, 2018, 128(6): 2177-2188. DOI: 10.1172/JCI120429.
- 25. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2231-2239. DOI: 10.1056/NEJMoa0802268.
- 26. Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med, 2015, 372(20): 1887-1897. DOI: 10.1056/NEJMoa1414221.
- 27. Botta S, Marrocco E. de Prisco N, et al. Rhodopsin targeted transcriptional silencing by DNA-binding[J/OL]. Elife, 2016, 5: e12242[2016-03-14]. https://pubmed.ncbi.nlm.nih.gov/26974343/. DOI: 10.7554/eLife.12242.
- 28. Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector[J/OL]. Proc Natl Acad Sci USA, 2018, 115(36): E8547-E8556[2018-08-20]. https://pubmed.ncbi.nlm.nih.gov/30127005/. DOI: 10.1073/pnas.1805055115.
- 29. Dang Y, Loewen R, Parikh HA, et al. Gene transfer to the outflow tract[J]. Exp Eye Res, 2017, 158: 73-84. DOI: 10.1016/j.exer.2016.04.023.
- 30. DiCarlo JE, Deeconda A, Tsang SH. Viral vectors, engineered cells and the CRISPR revolution[J]. Adv Exp Med Biol, 2017, 1016: 3-27. DOI: 10.1007/978-3-319-63904-8_1.
- 31. Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy[J]. Hum Gene Ther, 2017, 28(11): 982-987. DOI: 10.1089/hum.2017.164.
- 32. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8.
- 33. Takahashi Y, Chen Q, Rajala RVS, et al. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization[J]. FEBS Lett, 2015, 589(10): 1143-1149. DOI: 10.1016/j.febslet.2015.03.010.
- 34. Jiang DJ, Xu CL, Tsang SH. Revolution in gene medicine therapy and genome surgery[J/OL]. Genes (Basel), 2018, 9(12): 575[2018-11-26]. https://pubmed.ncbi.nlm.nih.gov/30486314/. DOI: 10.3390/genes9120575.
- 35. Little CW, Castillo B, DiLoret DA, et al. Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina[J]. Invest Ophthamol Vis Sci, 1996, 37(1): 204-211.
- 36. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J]. Cloning Stem Cells, 2006, 8(3): 189-199. DOI: 10.1089/clo.2006.8.189.
- 37. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2.
- 38. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
- 39. Chung S, Rho S, Kim G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury[J]. Int J Mol Med, 2016, 37(5): 1170-1180. DOI: 10.3892/ijmm.2016.2532.
- 40. Roth S, Dreixler JC, Mathew B, et al. Hypoxic-preconditioned bone marrow stem cell medium significantly improves outcome after retinal ischemia in rats[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3522-3532. DOI: 10.1167/iovs.15-17381.
- 41. Leow SN, Luu CD, Hairul Nizam MH, et al. Safety and efficacy of human Wharton's Jelly-Derived mesenchymal stem cells therapy for retinal degeneration[J/OL]. PLoS One, 2015, 10(6): e0128973[2015-06-24]. https://pubmed.ncbi.nlm.nih.gov/26107378/. DOI: 10.1371/journal.pone.0128973.
- 42. Tzameret A, Sher I, Belkin M, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration[J]. Stem Cell Res, 2015, 15(2): 387-394. DOI: 10.1016/j.scr.2015.08.007.
- 43. Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD[J]. N Engl J Med, 2017, 376(11): 1047-1053. DOI: 10.1056/NEJMoa1609583.
- 44. Satarian L, Nourinia R, Safi S, et al. Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa: a safety study[J]. J Ophthalmic Vis Res, 2017, 12(1): 58-64. DOI: 10.4103/2008-322X.200164.
- 45. Zou T, Gao L, Zeng Y, et al. Organoid-derived C-Kit/SSEA4 human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents[J/OL]. Nat Commun, 2019, 10(1): 1205[2019-03-14]. https://pubmed.ncbi.nlm.nih.gov/30872578/. DOI: 10.1038/s41467-019-08961-0.
- 46. Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients[J/OL]. Stem Cell Res Ther, 2017, 8(1): 209[2017-09-29]. https://pubmed.ncbi.nlm.nih.gov/28962643/. DOI: 10.1186/s13287-017-0661-8.
- 47. Terrell D, Comander J. Current stem-cell approaches for the treatment of inherited retinal degenerations[J]. Semin Ophthalmol, 2019, 34(4): 287-292. DOI: 10.1080/08820538.2019.1620808.
- 48. Bassuk AG, Zheng A, Li Y, et al. Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells[J/OL]. Sci Rep, 2016, 6: 19969[2016-01-27]. https://pubmed.ncbi.nlm.nih.gov/26814166/. DOI: 10.1038/srep19969.
- 49. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003.
- 50. Gagliardi G, Ben M'Barek K, Chaffiol A, et al. Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids[J]. Stem Cell Reports, 2018, 11(3): 665-680. DOI: 10.1016/j.stemcr.2018.07.005.
- 51. Ben M'Barek K, Bertin S, Brazhnikova E, et al. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents[J/OL]. Biomaterials, 2020, 230: 119603[2019-11-06]. https://pubmed.ncbi.nlm.nih.gov/31732225/. DOI: 10.1016/j.biomaterials.2019.119603.
- 52. Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032.
- 53. Zhu J, Cifuentes H, Reynolds J, et al. Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina[J]. Cell Stem Cell, 2017, 20(3): 374-384. DOI: 10.1016/j.stem.2016.11.019.
- 54. Morizur L, Herardot E, Monville C, et al. Human pluripotent stem cells: a toolbox to understand and treat retinal degeneration[J/OL]. Mol Cell Neurosci, 2020, 107: 103523[2020-07-04]. https://pubmed.ncbi.nlm.nih.gov/32634576/. DOI: 10.1016/j.mcn.2020.103523.
- 55. West EL, Gonzalez-Cordero A, Hippert C, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors[J]. Stem Cells, 2012, 30(7): 1424-1435. DOI: 10.1002/stem.1123.
- 56. Ben M'Barek K, Monville C. Cell therapy for retinal dystrophies: from cell suspension formulation to complex retinal tissue bioengineering[J/OL]. Stem Cells Int, 2019, 2019: 4568979[2019-01-23]. https://pubmed.ncbi.nlm.nih.gov/30809263/. DOI: 10.1155/2019/4568979.
-
Previous Article
急性轮状外层视网膜病变一例 -
Next Article
The study of the risk factors and pathogenesis of idiopathic epimacular membrane