- 1. The First Clinical Institute, Zunyi Medical University, Zunyi 563000, China;
- 2. Department of Ophthalmology, The Second Affiliated Hospital Zunyi Medical University, Zunyi 563000, China;
Idiopathic macular membrane (iERM) is a fibrocellular membrane that forms on the inner surface of the retina. In its early stages, symptoms of iERM are usually not apparent. However, advanced iERM can cause different degrees of visual impairment and effect the quality of life of patients. Current studies suggest that iERM may be associated with posterior vitreous detachment (PVD), age, sex, race and/or ethnicity, poor lifestyle, refractive error, diabetes, hypercholesterolemia, and cardiovascular disease. The most well-established risk factors for iERM are age and PVD. The pathogenesis of iERM is extremely complex. Various cell types, such as Müller cells, Hyalocytes and myofibroblasts, nerve growth factor, interleukin-6, transforming growth factor β, vascular endothelial growth factor and other cytokines and growth factors, as well as a variety of genes and proteins are directly or indirectly involved in the formation of iERM, however, their exact role remains a mystery. In the future, further studies at the molecular level and gene level are needed to provide greater help for the clinical diagnosis and treatment of iERM.
Citation: Zhang Hongmei, Liu Hongtao. The study of the risk factors and pathogenesis of idiopathic epimacular membrane. Chinese Journal of Ocular Fundus Diseases, 2021, 37(8): 651-655. doi: 10.3760/cma.j.cn511434-20200612-00279 Copy
1. | Frisina R, Tessarolo F, Marchesoni I, et al. Microscopic observation of proliferative membranes in fibrocontractive retinal disorders[J/OL]. J Ophthalmol, 2019, 2019: 9647947[2019-07-28]. https://pubmed.ncbi.nlm.nih.gov/31467697/. DOI: 10.1155/2019/9647947. |
2. | Joshi M, Agrawal S, Christoforidis JB. Inflammatory mechanisms of idiopathic epiretinal membrane formation[J/OL]. Mediators Inflamm, 2013, 2013: 192582[2013-11-11]. https://pubmed.ncbi.nlm.nih.gov/24324293/. DOI: 10.1155/2013/192582. |
3. | Zhao F, Gandorfer A, Haritoglou C, et al. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens[J]. Retina, 2013, 33(1): 77-88. DOI: 10.1097/IAE.0b013e3182602087. |
4. | Takagi S, Kudo S, Yokota H, et al. Assessment of the deformation of the outer nuclear layer in the epiretinal membrane using spectral-domain optical coherence tomography[J/OL]. BMC Ophthalmol, 2019, 19(1): 113[2019-05-17]. https://pubmed.ncbi.nlm.nih.gov/31101025/. DOI: 10.1186/s12886-019-1124-z. |
5. | Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade developments on epiretinal membrane pathogenesis[J]. Med Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110. |
6. | Bu SC, Kuijer R, Li XR, et al. Idiopathic epiretinal membrane[J]. Retina, 2014, 34(12): 2317-2335. DOI: 10.1097/IAE.0000000000000349. |
7. | Wang SB, Mitchell P, Plant AJ, et al. Prevalence and risk factors of epiretinal membrane in a cohort with cardiovascular disease risk, compared with the Blue Mountains Eye Study[J]. Br J Ophthalmol, 2015, 99(12): 1601-1605. DOI: 10.1136/bjophthalmol-2015-306776. |
8. | Kim YJ, Kim S, Lee JY, et al. Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study[J]. Br J Ophthalmol, 2018, 102(8): 1086-1091. DOI: 10.1136/bjophthalmol-2017-311188. |
9. | 卢颖毅, 戴虹, 夏群, 等. 特发性黄斑前膜眼黄斑光敏度的激光扫描检眼镜微视野检测[J]. 中华眼底病杂志, 2006, 22(2): 100-102. DOI: 10.3760/j.issn:1005-1015.2006.02.009.Lu YY, Dai H, Xia Q, et al. Macular light sensibility in idiopathic epiretinal membrane measured by scanning laser ophthalmoscope[J]. Chin J Ocul Fundus Dis, 2006, 22(2): 100-102. DOI: 10.3760/j.issn:1005-1015.2006.02.009. |
10. | Baamonde S, de Moura J, Novo J, et al. Automatic identification and characterization of the epiretinal membrane in OCT images[J]. Biomed Opt Express, 2019, 10(8): 4018-4033. DOI: 10.1364/BOE.10.004018. |
11. | Fung AT, Galvin J, Tran T. Epiretinal membrane: a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 289-308. DOI: 10.1111/ceo.13914. |
12. | Morillon C, Le Goff M, Gattoussi S, et al. Incidence, progression, and risk factors of epiretinal membranes in the elderly[J/OL]. Retina, 2021, 41(3): 495-504[2021-03-01]. https://pubmed.ncbi.nlm.nih.gov/32568986/. DOI: 10.1097/IAE.0000000000002871. |
13. | Luu K, Koenigsaecker T, Yazdanyar A, et al. Long-term natural history of idiopathic epiretinal membranes with good visual acuity[J]. Eye (Lond), 2019, 33(5): 714-723. DOI: 10.1038/s41433-019-0397-z. |
14. | Yang Y, Yan YN, Wang YX, et al. Ten-year cumulative incidence of epiretinal membranes assessed on fundus photographs. The Beijing Eye Study 2001/2011[J/OL]. PLoS One, 2018, 13(4): e0195768[2018-04-26]. https://pubmed.ncbi.nlm.nih.gov/29698410/. DOI: 10.1371/journal.pone.0195768. |
15. | 曾苗, 陈晓, 洪玲, 等. 特发性黄斑前膜患眼玻璃体切割联合内界膜剥除手术前后视力和视物变形度与黄斑形态结构的相关性[J]. 中华眼底病杂志, 2017, 33(4): 378-382. DOI: 10.3760/cma.j.issn.1005-1015.2017.04.012.Zeng M, Chen X, Hong L, Xia Q, et al. Correlation of visual acuity and metamorphopsia with foveal morphology before and after vitrectomy with internal limiting membrane peeling in idiopathic macular epiretinal membrane eyes[J]. Chin J Ocul Fundus Dis, 2017, 33(4): 378-382. DOI: 10.3760/cma.j.issn.1005-1015.2017.04.012. |
16. | 曾苗, 陈晓, 洪玲, 等. 特发性黄斑前膜患者中心凹无血管区面积与中心凹形态相关性研究[J]. 中华眼底病杂志, 2019, 35(1): 15-19. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.004.Zeng M, Chen X, Hong L, et al. Correlation between foveal avascular zone size and foveal morphology in patients with idiopathic macular epiretinal membrane[J]. Chin J Ocul Fundus Dis, 2019, 35(1): 15-19. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.004. |
17. | Mao J, Wu H, Liu C, et al. Changes in metamorphopsia, visual acuity, and central macular thickness after epiretinal membrane surgery in four preoperative stages classified with OCT B-scan images[J/OL]. J Ophthalmol, 2019, 2019: 7931654[2019-06-17]. https://pubmed.ncbi.nlm.nih.gov/31316825/. DOI: 10.1155/2019/7931654. |
18. | Semeraro F, Morescalchi F, Duse S, et al. Current trends about inner limiting membrane peeling in surgery for epiretinal membranes[J/OL]. J Ophthalmol, 2015, 2015: 671905[2015-09-03]. https://pubmed.ncbi.nlm.nih.gov/26425352/. DOI: 10.1155/2015/671905. |
19. | Chen W, Shen X, Zhang P, et al. Clinical characteristics, long-term surgical outcomes, and prognostic factors of epiretinal membrane in young patients[J]. Retina, 2019, 39(8): 1478-1487. DOI: 10.1097/IAE.0000000000002202. |
20. | Li Z, Zhang J, Lin T, et al. Macular vascular circulation and retinal oxygen saturation changes for idiopathic macular epiretinal membrane after vitrectomy[J]. Acta Ophthalmol, 2019, 97(3): 296-302. DOI: 10.1111/aos.14066. |
21. | McCarty DJ, Mukesh BN, Chikani V, et al. Prevalence and associations of epiretinal membranes in the visual impairment project[J]. Am J Ophthalmol, 2005, 140(2): 288-294. DOI: 10.1016/j.ajo.2005.03.032. |
22. | Kontopoulou K, Krause S, Fili S, et al. Juvenile idiopathische epiretinale membran[Juvenile idiopathic epiretinal membrane][J]. Ophthalmologe, 2016, 113(7): 599-601. DOI: 10.1007/s00347-015-0134-3. |
23. | Sato T, Morishita S, Horie T, et al. Involvement of premacular mast cells in the pathogenesis of macular diseases[J/OL]. PLoS One, 2019, 14(2): e0211438[2019-02-22]. https://pubmed.ncbi.nlm.nih.gov/30794552/. DOI: 10.1371/journal.pone.0211438. |
24. | Myojin S, Yoshimura T, Yoshida S, et al. Gene expression analysis of the irrigation solution samples collected during vitrectomy for idiopathic epiretinal membrane[J/OL]. PLoS One, 2016, 11(10): e0164355[2016-10-13]. https://pubmed.ncbi.nlm.nih.gov/27736918/. DOI: 10.1371/journal.pone.0164355. |
25. | Nishikawa Y, Morishita S, Horie T, et al. A comparison of sex steroid concentration levels in the vitreous and serum of patients with vitreoretinal diseases[J/OL]. PLoS One, 2017, 12(7): e0180933[2017-07-13]. https://pubmed.ncbi.nlm.nih.gov/28704441/. DOI: 10.1371/journal.pone.0180933. |
26. | Aung KZ, Makeyeva G, Adams MK, et al. The prevalence and risk factors of epiretinal membranes: the melbourne collaborative cohort study[J]. Retina, 2013, 33(5): 1026-1034. DOI: 10.1097/IAE.0b013e3182733f25. |
27. | Checa M, Hagood JS, Velazquez-Cruz R, et al. Cigarette smoke enhances the expression of profibrotic molecules in alveolar epithelial cells[J/OL]. PLoS One, 2016, 11(3): e0150383[2016-03-02]. https://pubmed.ncbi.nlm.nih.gov/26934369/. DOI: 10.1371/journal.pone.0150383. |
28. | Wang SZ, Tong QH, Wang HY, et al. The Association between smoking and epiretinal membrane[J/OL]. Sci Rep, 2016, 6: 38038[2016-11-29]. https://pubmed.ncbi.nlm.nih.gov/27897264/. DOI: 10.1038/srep38038. |
29. | Xiao W, Chen X, Yan W, et al. Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies[J/OL]. BMJ Open, 2017, 7(9): e014644[2017-09-25]. https://pubmed.ncbi.nlm.nih.gov/28951399/ DOI: 10.1136/bmjopen-2016-014644. |
30. | Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages[J]. Am J Ophthalmol, 2010, 149(3): 371-382. DOI: 10.1016/j.ajo.2009.11.022. |
31. | Angi M, Kalirai H, Coupland SE, et al. Proteomic analyses of the vitreous humour[J/OL]. Mediators Inflamm, 2012, 2012: 148039[2012-08-29]. https://pubmed.ncbi.nlm.nih.gov/22973072/. DOI: 10.1155/2012/148039. |
32. | Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry[J]. Biomech Model Mechanobiol, 2010, 9(1): 65-76. DOI: 10.1007/s10237-009-0159-0. |
33. | Meskauskas J, Repetto R, Siggers JH. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6271-6281. DOI: 10.1167/iovs.11-9390. |
34. | van Deemter M, Ponsioen TL, Bank RA, et al. Pentosidine accumulates in the aging vitreous body: a gender effect[J]. Exp Eye Res, 2009, 88(6): 1043-1050. DOI: 10.1016/j.exer.2009.01.004. |
35. | Yu J, Feng L, Wu Y, et al. Vitreous proteomic analysis of idiopathic epiretinal membranes[J]. Mol Biosyst, 2014, 10(10): 2558-2566. DOI: 10.1039/c4mb00240g. |
36. | Jeon S, Baek J, Lee WK. Gli1 expression in human epiretinal membranes[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 651-659. DOI: 10.1167/iovs.16-20409. |
37. | Andjelić S, Lumi X, Yan X, et al. Characterization of ex vivo cultured neuronal-and glial-like cells from human idiopathic epiretinal membranes[J/OL]. BMC Ophthalmol, 2014, 14: 165[2014-12-23]. https://pubmed.ncbi.nlm.nih.gov/25540050/. DOI: 10.1186/1471-2415-14-165. |
38. | Oberstein SY, Byun J, Herrera D, et al. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration[J]. Mol Vis, 2011, 17: 1794-1805. |
39. | Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x. |
40. | Öhman T, Tamene F, Göös H, et al. Systems pathology analysis identifies neurodegenerative nature of age-related vitreoretinal interface diseases[J/OL]. Aging Cell, 2018, 17(5): e12809[2018-07-02]. https://pubmed.ncbi.nlm.nih.gov/29963742/. DOI: 10.1111/acel.12809. |
41. | Zhang L, Li X, Lin X, et al. Nerve growth factor promotes the proliferation of Müller cells co-cultured with internal limiting membrane by regulating cell cycle via Trk-A/PI3K/Akt pathway[J/OL]. BMC Ophthalmol, 2019, 19(1): 130[2019-06-17]. https://pubmed.ncbi.nlm.nih.gov/31208396/. DOI: 10.1186/s12886-019-1142-x. |
42. | Kohno RI, Hata Y, Kawahara S, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction[J]. Br J Ophthalmol, 2009, 93(8): 1020-1026. DOI: 10.1136/bjo.2008.155069. |
43. | Stevenson W, Prospero Ponce CM, Agarwal DR, et al. Epiretinal membrane: optical coherence tomography-based diagnosis and classification[J]. Clin Ophthalmol, 2016, 10: 527-534. DOI: 10.2147/OPTH.S97722. |
44. | George B, Chen S, Chaudhary V, et al. Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy[J]. Curr Eye Res, 2009, 34(2): 134-144. DOI: 10.1080/02713680802585946. |
45. | Kritzenberger M, Junglas B, Framme C, et al. Different collagen types define two types of idiopathic epiretinal membranes[J]. Histopathology, 2011, 58(6): 953-965. DOI: 10.1111/j.1365-2559.2011.03820.x. |
46. | Bu SC, Kuijer R, van der Worp RJ, et al. Immunohistochemical evaluation of idiopathic epiretinal membranes and in vitro studies on the effect of TGF-β on Müller cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6506-6514. DOI: 10.1167/iovs.14-15971. |
47. | Groulx JF, Gagné D, Benoit YD, et al. Collagen Ⅵ is a basement membrane component that regulates epithelial cell-fibronectin interactions[J]. Matrix Biol, 2011, 30(3): 195-206. DOI: 10.1016/j.matbio.2011.03.002. |
48. | Luo W, Hu L, Li W, et al. Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(5): 881-890. DOI: 10.1007/s00417-016-3290-5. |
49. | Iannetti L, Accorinti M, Malagola R, et al. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5786-5789. DOI: 10.1167/iovs.10-7116. |
50. | Lesnik Oberstein SY, Lewis GP, Dutra T, et al. Evidence that neurites in human epiretinal membranes express melanopsin, calretinin, rod opsin and neurofilament protein[J]. Br J Ophthalmol, 2011, 95(2): 266-272. DOI: 10.1136/bjo.2010.180679. |
51. | Stein GE, Jung JJ, Bodine S, et al. Vitrectomy for macular hole following Nd: YAG laser injury[J]. Taiwan J Ophthalmol, 2016, 6(4): 195-198. DOI: 10.1016/j.tjo.2016.05.005. |
52. | Hashimoto R, Jiang M, Shiba T, et al. Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(5): 885-891. DOI: 10.1007/s00417-017-3585-1. |
53. | Romano MR, Cennamo G, Montorio D, et al. Correlation between various trace elements and ultramicroscopic structure of epiretinal macular membranes and glial cells[J/OL]. PLoS One, 2018, 13(9): e0204497[2018-09-28]. https://pubmed.ncbi.nlm.nih.gov/30265684/. DOI: 10.1371/journal.pone.0204497. |
54. | Tsotridou E, Loukovitis E, Zapsalis K, et al. Update on the cellular, genetic and cytokine basis of epiretinal membrane pathogenesis[J]. J Biol Regul Homeost Agents, 2019, 33(6): 1879-1884. DOI: 10.23812/19-275-L. |
55. | Ulhaq ZS, Soraya GV, Budu, et al. The role of IL-6-174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis[J/OL]. Sci Rep, 2020, 10(1): 17453[2020-10-15]. https://pubmed.ncbi.nlm.nih.gov/33060644/. DOI: 10.1038/s41598-020-74203-9. |
- 1. Frisina R, Tessarolo F, Marchesoni I, et al. Microscopic observation of proliferative membranes in fibrocontractive retinal disorders[J/OL]. J Ophthalmol, 2019, 2019: 9647947[2019-07-28]. https://pubmed.ncbi.nlm.nih.gov/31467697/. DOI: 10.1155/2019/9647947.
- 2. Joshi M, Agrawal S, Christoforidis JB. Inflammatory mechanisms of idiopathic epiretinal membrane formation[J/OL]. Mediators Inflamm, 2013, 2013: 192582[2013-11-11]. https://pubmed.ncbi.nlm.nih.gov/24324293/. DOI: 10.1155/2013/192582.
- 3. Zhao F, Gandorfer A, Haritoglou C, et al. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens[J]. Retina, 2013, 33(1): 77-88. DOI: 10.1097/IAE.0b013e3182602087.
- 4. Takagi S, Kudo S, Yokota H, et al. Assessment of the deformation of the outer nuclear layer in the epiretinal membrane using spectral-domain optical coherence tomography[J/OL]. BMC Ophthalmol, 2019, 19(1): 113[2019-05-17]. https://pubmed.ncbi.nlm.nih.gov/31101025/. DOI: 10.1186/s12886-019-1124-z.
- 5. Tsotridou E, Loukovitis E, Zapsalis K, et al. A review of last decade developments on epiretinal membrane pathogenesis[J]. Med Hypothesis Discov Innov Ophthalmol, 2020, 9(2): 91-110.
- 6. Bu SC, Kuijer R, Li XR, et al. Idiopathic epiretinal membrane[J]. Retina, 2014, 34(12): 2317-2335. DOI: 10.1097/IAE.0000000000000349.
- 7. Wang SB, Mitchell P, Plant AJ, et al. Prevalence and risk factors of epiretinal membrane in a cohort with cardiovascular disease risk, compared with the Blue Mountains Eye Study[J]. Br J Ophthalmol, 2015, 99(12): 1601-1605. DOI: 10.1136/bjophthalmol-2015-306776.
- 8. Kim YJ, Kim S, Lee JY, et al. Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study[J]. Br J Ophthalmol, 2018, 102(8): 1086-1091. DOI: 10.1136/bjophthalmol-2017-311188.
- 9. 卢颖毅, 戴虹, 夏群, 等. 特发性黄斑前膜眼黄斑光敏度的激光扫描检眼镜微视野检测[J]. 中华眼底病杂志, 2006, 22(2): 100-102. DOI: 10.3760/j.issn:1005-1015.2006.02.009.Lu YY, Dai H, Xia Q, et al. Macular light sensibility in idiopathic epiretinal membrane measured by scanning laser ophthalmoscope[J]. Chin J Ocul Fundus Dis, 2006, 22(2): 100-102. DOI: 10.3760/j.issn:1005-1015.2006.02.009.
- 10. Baamonde S, de Moura J, Novo J, et al. Automatic identification and characterization of the epiretinal membrane in OCT images[J]. Biomed Opt Express, 2019, 10(8): 4018-4033. DOI: 10.1364/BOE.10.004018.
- 11. Fung AT, Galvin J, Tran T. Epiretinal membrane: a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 289-308. DOI: 10.1111/ceo.13914.
- 12. Morillon C, Le Goff M, Gattoussi S, et al. Incidence, progression, and risk factors of epiretinal membranes in the elderly[J/OL]. Retina, 2021, 41(3): 495-504[2021-03-01]. https://pubmed.ncbi.nlm.nih.gov/32568986/. DOI: 10.1097/IAE.0000000000002871.
- 13. Luu K, Koenigsaecker T, Yazdanyar A, et al. Long-term natural history of idiopathic epiretinal membranes with good visual acuity[J]. Eye (Lond), 2019, 33(5): 714-723. DOI: 10.1038/s41433-019-0397-z.
- 14. Yang Y, Yan YN, Wang YX, et al. Ten-year cumulative incidence of epiretinal membranes assessed on fundus photographs. The Beijing Eye Study 2001/2011[J/OL]. PLoS One, 2018, 13(4): e0195768[2018-04-26]. https://pubmed.ncbi.nlm.nih.gov/29698410/. DOI: 10.1371/journal.pone.0195768.
- 15. 曾苗, 陈晓, 洪玲, 等. 特发性黄斑前膜患眼玻璃体切割联合内界膜剥除手术前后视力和视物变形度与黄斑形态结构的相关性[J]. 中华眼底病杂志, 2017, 33(4): 378-382. DOI: 10.3760/cma.j.issn.1005-1015.2017.04.012.Zeng M, Chen X, Hong L, Xia Q, et al. Correlation of visual acuity and metamorphopsia with foveal morphology before and after vitrectomy with internal limiting membrane peeling in idiopathic macular epiretinal membrane eyes[J]. Chin J Ocul Fundus Dis, 2017, 33(4): 378-382. DOI: 10.3760/cma.j.issn.1005-1015.2017.04.012.
- 16. 曾苗, 陈晓, 洪玲, 等. 特发性黄斑前膜患者中心凹无血管区面积与中心凹形态相关性研究[J]. 中华眼底病杂志, 2019, 35(1): 15-19. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.004.Zeng M, Chen X, Hong L, et al. Correlation between foveal avascular zone size and foveal morphology in patients with idiopathic macular epiretinal membrane[J]. Chin J Ocul Fundus Dis, 2019, 35(1): 15-19. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.004.
- 17. Mao J, Wu H, Liu C, et al. Changes in metamorphopsia, visual acuity, and central macular thickness after epiretinal membrane surgery in four preoperative stages classified with OCT B-scan images[J/OL]. J Ophthalmol, 2019, 2019: 7931654[2019-06-17]. https://pubmed.ncbi.nlm.nih.gov/31316825/. DOI: 10.1155/2019/7931654.
- 18. Semeraro F, Morescalchi F, Duse S, et al. Current trends about inner limiting membrane peeling in surgery for epiretinal membranes[J/OL]. J Ophthalmol, 2015, 2015: 671905[2015-09-03]. https://pubmed.ncbi.nlm.nih.gov/26425352/. DOI: 10.1155/2015/671905.
- 19. Chen W, Shen X, Zhang P, et al. Clinical characteristics, long-term surgical outcomes, and prognostic factors of epiretinal membrane in young patients[J]. Retina, 2019, 39(8): 1478-1487. DOI: 10.1097/IAE.0000000000002202.
- 20. Li Z, Zhang J, Lin T, et al. Macular vascular circulation and retinal oxygen saturation changes for idiopathic macular epiretinal membrane after vitrectomy[J]. Acta Ophthalmol, 2019, 97(3): 296-302. DOI: 10.1111/aos.14066.
- 21. McCarty DJ, Mukesh BN, Chikani V, et al. Prevalence and associations of epiretinal membranes in the visual impairment project[J]. Am J Ophthalmol, 2005, 140(2): 288-294. DOI: 10.1016/j.ajo.2005.03.032.
- 22. Kontopoulou K, Krause S, Fili S, et al. Juvenile idiopathische epiretinale membran[Juvenile idiopathic epiretinal membrane][J]. Ophthalmologe, 2016, 113(7): 599-601. DOI: 10.1007/s00347-015-0134-3.
- 23. Sato T, Morishita S, Horie T, et al. Involvement of premacular mast cells in the pathogenesis of macular diseases[J/OL]. PLoS One, 2019, 14(2): e0211438[2019-02-22]. https://pubmed.ncbi.nlm.nih.gov/30794552/. DOI: 10.1371/journal.pone.0211438.
- 24. Myojin S, Yoshimura T, Yoshida S, et al. Gene expression analysis of the irrigation solution samples collected during vitrectomy for idiopathic epiretinal membrane[J/OL]. PLoS One, 2016, 11(10): e0164355[2016-10-13]. https://pubmed.ncbi.nlm.nih.gov/27736918/. DOI: 10.1371/journal.pone.0164355.
- 25. Nishikawa Y, Morishita S, Horie T, et al. A comparison of sex steroid concentration levels in the vitreous and serum of patients with vitreoretinal diseases[J/OL]. PLoS One, 2017, 12(7): e0180933[2017-07-13]. https://pubmed.ncbi.nlm.nih.gov/28704441/. DOI: 10.1371/journal.pone.0180933.
- 26. Aung KZ, Makeyeva G, Adams MK, et al. The prevalence and risk factors of epiretinal membranes: the melbourne collaborative cohort study[J]. Retina, 2013, 33(5): 1026-1034. DOI: 10.1097/IAE.0b013e3182733f25.
- 27. Checa M, Hagood JS, Velazquez-Cruz R, et al. Cigarette smoke enhances the expression of profibrotic molecules in alveolar epithelial cells[J/OL]. PLoS One, 2016, 11(3): e0150383[2016-03-02]. https://pubmed.ncbi.nlm.nih.gov/26934369/. DOI: 10.1371/journal.pone.0150383.
- 28. Wang SZ, Tong QH, Wang HY, et al. The Association between smoking and epiretinal membrane[J/OL]. Sci Rep, 2016, 6: 38038[2016-11-29]. https://pubmed.ncbi.nlm.nih.gov/27897264/. DOI: 10.1038/srep38038.
- 29. Xiao W, Chen X, Yan W, et al. Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies[J/OL]. BMJ Open, 2017, 7(9): e014644[2017-09-25]. https://pubmed.ncbi.nlm.nih.gov/28951399/ DOI: 10.1136/bmjopen-2016-014644.
- 30. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages[J]. Am J Ophthalmol, 2010, 149(3): 371-382. DOI: 10.1016/j.ajo.2009.11.022.
- 31. Angi M, Kalirai H, Coupland SE, et al. Proteomic analyses of the vitreous humour[J/OL]. Mediators Inflamm, 2012, 2012: 148039[2012-08-29]. https://pubmed.ncbi.nlm.nih.gov/22973072/. DOI: 10.1155/2012/148039.
- 32. Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry[J]. Biomech Model Mechanobiol, 2010, 9(1): 65-76. DOI: 10.1007/s10237-009-0159-0.
- 33. Meskauskas J, Repetto R, Siggers JH. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6271-6281. DOI: 10.1167/iovs.11-9390.
- 34. van Deemter M, Ponsioen TL, Bank RA, et al. Pentosidine accumulates in the aging vitreous body: a gender effect[J]. Exp Eye Res, 2009, 88(6): 1043-1050. DOI: 10.1016/j.exer.2009.01.004.
- 35. Yu J, Feng L, Wu Y, et al. Vitreous proteomic analysis of idiopathic epiretinal membranes[J]. Mol Biosyst, 2014, 10(10): 2558-2566. DOI: 10.1039/c4mb00240g.
- 36. Jeon S, Baek J, Lee WK. Gli1 expression in human epiretinal membranes[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 651-659. DOI: 10.1167/iovs.16-20409.
- 37. Andjelić S, Lumi X, Yan X, et al. Characterization of ex vivo cultured neuronal-and glial-like cells from human idiopathic epiretinal membranes[J/OL]. BMC Ophthalmol, 2014, 14: 165[2014-12-23]. https://pubmed.ncbi.nlm.nih.gov/25540050/. DOI: 10.1186/1471-2415-14-165.
- 38. Oberstein SY, Byun J, Herrera D, et al. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration[J]. Mol Vis, 2011, 17: 1794-1805.
- 39. Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x.
- 40. Öhman T, Tamene F, Göös H, et al. Systems pathology analysis identifies neurodegenerative nature of age-related vitreoretinal interface diseases[J/OL]. Aging Cell, 2018, 17(5): e12809[2018-07-02]. https://pubmed.ncbi.nlm.nih.gov/29963742/. DOI: 10.1111/acel.12809.
- 41. Zhang L, Li X, Lin X, et al. Nerve growth factor promotes the proliferation of Müller cells co-cultured with internal limiting membrane by regulating cell cycle via Trk-A/PI3K/Akt pathway[J/OL]. BMC Ophthalmol, 2019, 19(1): 130[2019-06-17]. https://pubmed.ncbi.nlm.nih.gov/31208396/. DOI: 10.1186/s12886-019-1142-x.
- 42. Kohno RI, Hata Y, Kawahara S, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction[J]. Br J Ophthalmol, 2009, 93(8): 1020-1026. DOI: 10.1136/bjo.2008.155069.
- 43. Stevenson W, Prospero Ponce CM, Agarwal DR, et al. Epiretinal membrane: optical coherence tomography-based diagnosis and classification[J]. Clin Ophthalmol, 2016, 10: 527-534. DOI: 10.2147/OPTH.S97722.
- 44. George B, Chen S, Chaudhary V, et al. Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy[J]. Curr Eye Res, 2009, 34(2): 134-144. DOI: 10.1080/02713680802585946.
- 45. Kritzenberger M, Junglas B, Framme C, et al. Different collagen types define two types of idiopathic epiretinal membranes[J]. Histopathology, 2011, 58(6): 953-965. DOI: 10.1111/j.1365-2559.2011.03820.x.
- 46. Bu SC, Kuijer R, van der Worp RJ, et al. Immunohistochemical evaluation of idiopathic epiretinal membranes and in vitro studies on the effect of TGF-β on Müller cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6506-6514. DOI: 10.1167/iovs.14-15971.
- 47. Groulx JF, Gagné D, Benoit YD, et al. Collagen Ⅵ is a basement membrane component that regulates epithelial cell-fibronectin interactions[J]. Matrix Biol, 2011, 30(3): 195-206. DOI: 10.1016/j.matbio.2011.03.002.
- 48. Luo W, Hu L, Li W, et al. Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(5): 881-890. DOI: 10.1007/s00417-016-3290-5.
- 49. Iannetti L, Accorinti M, Malagola R, et al. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5786-5789. DOI: 10.1167/iovs.10-7116.
- 50. Lesnik Oberstein SY, Lewis GP, Dutra T, et al. Evidence that neurites in human epiretinal membranes express melanopsin, calretinin, rod opsin and neurofilament protein[J]. Br J Ophthalmol, 2011, 95(2): 266-272. DOI: 10.1136/bjo.2010.180679.
- 51. Stein GE, Jung JJ, Bodine S, et al. Vitrectomy for macular hole following Nd: YAG laser injury[J]. Taiwan J Ophthalmol, 2016, 6(4): 195-198. DOI: 10.1016/j.tjo.2016.05.005.
- 52. Hashimoto R, Jiang M, Shiba T, et al. Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(5): 885-891. DOI: 10.1007/s00417-017-3585-1.
- 53. Romano MR, Cennamo G, Montorio D, et al. Correlation between various trace elements and ultramicroscopic structure of epiretinal macular membranes and glial cells[J/OL]. PLoS One, 2018, 13(9): e0204497[2018-09-28]. https://pubmed.ncbi.nlm.nih.gov/30265684/. DOI: 10.1371/journal.pone.0204497.
- 54. Tsotridou E, Loukovitis E, Zapsalis K, et al. Update on the cellular, genetic and cytokine basis of epiretinal membrane pathogenesis[J]. J Biol Regul Homeost Agents, 2019, 33(6): 1879-1884. DOI: 10.23812/19-275-L.
- 55. Ulhaq ZS, Soraya GV, Budu, et al. The role of IL-6-174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis[J/OL]. Sci Rep, 2020, 10(1): 17453[2020-10-15]. https://pubmed.ncbi.nlm.nih.gov/33060644/. DOI: 10.1038/s41598-020-74203-9.