1. |
Shaw PX, Zhang L, Zhang M, et al. Complement factor H genotypes impact risk of age-related macular degeneration by interaction with oxidized phospholipids[J]. Proc Natl Acad Sci USA, 2012, 109(34): 13757-13762. DOI: 10.1073/pnas.1121309109.
|
2. |
张敏, 李志坚, 王亚敏. 细胞焦亡在眼部疾病中的研究进展[J]. 眼科新进展, 2019, 39(1): 82-85. DOI: 10.13389/j.cnki.rao.2019.2019.Zhang M, Li ZJ, Wang YM. Research progress of pyroptosis in ocular diseases[J]. Rec Adv Ophthalmol, 2019, 39(1): 82-85. DOI: 10.13389/j.cnki.rao.2019.2019.
|
3. |
Huang P, Liu W, Chen J, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11): 2213-2219. DOI: 10.1002/cbin.11429.
|
4. |
Chen Y, Bedell M, Zhang K. Age-related macular degeneration: genetic and environmental factors of disease[J]. Mol Interv, 2010, 10(5): 271-281. DOI: 10.1124/mi.10.5.4.
|
5. |
Wang L, Clark ME, Crossman DK, et al. Abundant lipid and protein components of drusen[J/OL]. PLoS One, 2010, 5(4): e10329[2010-04-23]. https://pubmed.ncbi.nlm.nih.gov/20428236/. DOI: 10.1371/journal.pone.0010329.
|
6. |
Curcio CA, Presley JB, Millican CL, et al. Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles[J]. Exp Eye Res, 2005, 80(6): 761-775. DOI: 10.1016/j.exer.2004.09.017.
|
7. |
Ramos MA, Kuzuya M, Esaki T, et al. Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 1998, 18(7): 1188-1196. DOI: 10.1161/01.atv.18.7.1188.
|
8. |
Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis[J/OL]. Mediators Inflamm, 2013, 2013: 152786[2013-07-10]. https://pubmed.ncbi.nlm.nih.gov/23935243/. DOI: 10.1155/2013/152786.
|
9. |
Gnanaguru G, Choi AR, Amarnani D, et al. Oxidized lipoprotein uptake through the CD36 receptor activates the NLRP3 inflammasome in human retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4704-4712. DOI: 10.1167/iovs.15-18663.
|
10. |
Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832. DOI: 10.1016/j.cell.2010.01.040.
|
11. |
Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381): 278-286. DOI: 10.1038/nature10759.
|
12. |
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nat Immunol, 2013, 14(8): 812-820. DOI: 10.1038/ni.2639.
|
13. |
Netea MG, Simon A, Van De Veerdonk F, et al. IL-1beta processing in host defense: beyond the inflammasomes[J/OL]. PLoS Pathog, 2010, 6(2): e1000661[2010-02-26]. https://pubmed.ncbi.nlm.nih.gov/20195505/. DOI: 10.1371/journal.ppat.1000661.
|
14. |
Chen L, Yao Q, Xu S, et al. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux[J]. Biochem Biophys Res Commun, 2018, 495(1): 382-387. DOI: 10.1016/j.bbrc.2017.11.025.
|
15. |
Wallach D, Kang TB, Kovalenko A. Concepts of tissue injury and cell death in inflammation: a historical perspective[J]. Nat Rev Immunol, 2014, 14(1): 51-59. DOI: 10.1038/nri3561.
|
16. |
潘纩, Ismail M.O.Abukhousa, 王艺东 新型程序性细胞死亡方式—焦亡的研究进展[J]. 现代生物医学进展, 2019, 19(9): 1793-1797. DOI: 10.13241/j.cnki.pmb.2019.09.043.Pan K, Abukhousa IMO, Wang YD. Research progress of a new type of programmed cell death-pyroptosis[J]. Progress in Modern Biomedicine, 2019, 19(9): 1793-1797. DOI: 10.13241/j.cnki.pmb.2019.09.043.
|
17. |
Lin H, Xu H, Liang FQ, et al. Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3521-3529. DOI: 10.1167/iovs.10-6163.
|
18. |
Zhaolin Z, Jiaojiao C, Peng W, et al. OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway[J]. J Cell Physiol, 2019, 234(5): 7475-7491. DOI: 10.1002/jcp.27509.
|
19. |
Zi Y, Yi-An Y, Bing J, et al. Sirt6-induced autophagy restricted TREM-1-mediated pyroptosis in ox-LDL-treated endothelial cells: relevance to prognostication of patients with acute myocardial infarction[J/OL]. Cell Death Discov, 2019, 5: 88[2019-04-12]. https://pubmed.ncbi.nlm.nih.gov/30993014/. DOI: 10.1038/s41420-019-0168-4.
|
20. |
Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis[J]. Mol Microbiol, 2000, 38(1): 31-40. DOI: 10.1046/j.1365-2958.2000.02103.x.
|
21. |
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells[J]. Infect Immun, 2005, 73(4): 1907-1916. DOI: 10.1128/IAI.73.4.1907-1916.2005.
|
22. |
Zeng CY, Li CG, Shu JX, et al. ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages[J]. Apoptosis, 2019, 24(9-10): 703-717. DOI: 10.1007/s10495-019-01551-x.
|
23. |
Liao Y, Zhang H, He D, et al. Retinal pigment epithelium cell death is associated with NLRP3 inflammasome activation by all-trans retinal[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3034-3045. DOI: 10.1167/iovs.18-26360.
|
24. |
Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD[J]. Prog Retin Eye Res, 2017, 60: 201-218. DOI: 10.1016/j.preteyeres.2017.03.002.
|
25. |
Du H, Xiao X, Stiles T, et al. Novel mechanistic interplay between products of oxidative stress and components of the complement system in AMD pathogenesis[J]. Open J Ophthalmol, 2016, 6(1): 43-50. DOI: 10.4236/ojoph.2016.61006.
|
26. |
Kauppinen A, Paterno JJ, Blasiak J, et al. Inflammation and its role in age-related macular degeneration[J]. Cell Mol Life Sci, 2016, 73(9): 1765-1786. DOI: 10.1007/s00018-016-2147-8.
|
27. |
Tarallo V, Hirano Y, Gelfand BD, et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88[J]. Cell, 2012, 149(4): 847-859. DOI: 10.1016/j.cell.2012.03.036.
|
28. |
Gao J, Cui JZ, To E, et al. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye[J/OL]. J Neuroinflammation, 2018, 15(1): 15[2018-01-12]. https://pubmed.ncbi.nlm.nih.gov/29329580/. DOI: 10.1186/s12974-018-1062-3.
|
29. |
Ibrahim J, De Schutter E, Op De Beeck K. GSDME: a potential ally in cancer detection and treatment[J]. Trends in cancer, 2021, 7(5): 392-394. DOI: 10.1016/j.trecan.2020.12.002.
|
30. |
Brandstetter C, Patt J, Holz FG, et al. Inflammasome priming increases retinal pigment epithelial cell susceptibility to lipofuscin phototoxicity by changing the cell death mechanism from apoptosis to pyroptosis[J]. J Photochem Photobiol B, 2016, 161: 177-183. DOI: 10.1016/j.jphotobiol.2016.05.018.
|
31. |
Kim GY, Lee JW, Ryu HC, et al. Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis[J]. J Immunol, 2010, 184(7): 3946-3954. DOI: 10.4049/jimmunol.0901735.
|
32. |
Lavalette S, Raoul W, Houssier M, et al. Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration[J]. Am J Pathol, 2011, 178(5): 2416-2423. DOI: 10.1016/j.ajpath.2011.01.013.
|
33. |
Li A, Dubey S, Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis[J]. J Immunol, 2003, 170(6): 3369-3376. DOI: 10.4049/jimmunol.170.6.3369.
|
34. |
Nakao S, Noda K, Zandi S, et al. VAP-1-mediated M2 macrophage infiltration underlies IL-1β-but not VEGF-A-induced lymph-and angiogenesis[J]. Am J Pathol, 2011, 178(4): 1913-1921. DOI: 10.1016/j.ajpath.2011.01.011.
|
35. |
Ijima R, Kaneko H, Ye F, et al. Interleukin-18 induces retinal pigment epithelium degeneration in mice[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6673-6678. DOI: 10.1167/iovs.14-15367.
|
36. |
Wu T, Dang KR, Wang YF, et al. A modified laser-induced choroidal neovascularization animal model with intravitreal oxidized low-density lipoprotein[J]. Int J Ophthalmol, 2020, 13(8): 1187-1194. DOI: 10.18240/ijo.2020.08.03.
|
37. |
Wu T, Xu W, Wang Y, et al. OxLDL enhances choroidal neovascularization lesion through inducing vascular endothelium to mesenchymal transition process and angiogenic factor expression[J/OL]. Cell Signal, 2020, 70: 109571[2020-02-19]. https://pubmed.ncbi.nlm.nih.gov/32087305/. DOI: 10.1016/j.cellsig.2020.109571.
|
38. |
Dandapat A, Hu C, Sun L, et al. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway[J]. Arterioscler Thromb Vasc Biol, 2007, 27(11): 2435-2442. DOI: 10.1161/ATVBAHA.107.152272.
|
39. |
Fang L, Choi SH, Baek JS, et al. Control of angiogenesis by AIBP-mediated cholesterol efflux[J]. Nature, 2013, 498(7452): 118-122. DOI: 10.1038/nature12166.
|
40. |
Zhu R, Ou Z, Ruan X, et al. Role of liver X receptors in cholesterol efflux and inflammatory signaling (review)[J]. Mol Med Rep, 2012, 5(4): 895-900. DOI: 10.3892/mmr.2012.758.
|
41. |
Sene A, Khan AA, Cox D, et al. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration[J]. Cell Metab, 2013, 17(4): 549-561. DOI: 10.1016/j.cmet.2013.03.009.
|
42. |
Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors[J]. Nat Med, 2003, 9(2): 213-219. DOI: 10.1038/nm820.
|
43. |
Noghero A, Perino A, Seano G, et al. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2280-2288. DOI: 10.1161/ATVBAHA.112.250621.
|
44. |
Vavvas DG, Daniels AB, Kapsala ZG, et al. Regression of some high-risk features of age-related macular degeneration (AMD) in patients receiving intensive statin treatment[J]. EBioMedicine, 2016, 5: 198-203. DOI: 10.1016/j.ebiom.2016.01.033.
|
45. |
Zhou J, Massey S, Story D, et al. Metformin: an old drug with new applications[J/OL]. Int J Mol Sci, 2018, 19(10): 2863[2018-09-21]. https://pubmed.ncbi.nlm.nih.gov/30241400/. DOI: 10.3390/ijms19102863.
|
46. |
Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis[J]. Free Radic Biol Med, 2018, 118: 85-97. DOI: 10.1016/j.freeradbiomed.2018.02.031.
|
47. |
He X, Chen X, Wang L, et al. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux[J]. Life Sci, 2019, 216: 67-74. DOI: 10.1016/j.lfs.2018.09.024.
|
48. |
Tang G, Yang H, Chen J, et al. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway[J]. Oncotarget, 2017, 8(58): 97977-97989. DOI: 10.18632/oncotarget.20105.
|
49. |
Tokubuchi I, Tajiri Y, Iwata S, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats[J/OL]. PLoS One, 2017, 12(2): e0171293[2017-02-03]. https://pubmed.ncbi.nlm.nih.gov/28158227/. DOI: 10.1371/journal.pone.0171293.
|
50. |
Cahova M, Palenickova E, Dankova H, et al. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(2): G100-111. DOI: 10.1152/ajpgi.00329.2014.
|
51. |
Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases[J/OL]. Front Endocrinol (Lausanne), 2018, 9: 400[2018-07-19]. https://pubmed.ncbi.nlm.nih.gov/30072954/. DOI: 10.3389/fendo.2018.00400.
|
52. |
Han J, Li Y, Liu X, et al. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo[J/OL]. PLoS One, 2018, 13(3): e0193031[2018-04-07]. https://pubmed.ncbi.nlm.nih.gov/29513760/. DOI: 10.1371/journal.pone.0193031.
|
53. |
Ying Y, Ueta T, Jiang S, et al. Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK[J]. Oncotarget, 2017, 8(20): 32794-32806. DOI: 10.18632/oncotarget.15825.
|
54. |
Chen YY, Shen YC, Lai YJ, et al. Association between metformin and a lower risk of age-related macular degeneration in patients with type 2 diabetes[J/OL]. J Ophthalmol, 2019, 2019: 1649156[2019-10-31]. https://pubmed.ncbi.nlm.nih.gov/31781371/. DOI: 10.1155/2019/1649156.
|
55. |
Weismann D, Hartvigsen K, Lauer N, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress[J]. Nature, 2011, 478(7367): 76-81. DOI: 10.1038/nature10449.
|