1. |
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103(2): 167-175. DOI: 10.1136/bjophthalmol-2018-313173.
|
2. |
Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J/OL]. J Glob Health, 2018, 8(1): 010803[2018-06- 09]. https://pubmed.ncbi.nlm.nih.gov/29899983/. DOI: 10.7189/jogh.08.010803.
|
3. |
Lee AY, Yanagihara RT, Lee CS, et al. Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems[J]. Diabetes Care, 2021, 44(5): 1168-1175. DOI: 10.2337/dc20-1877.
|
4. |
Ming S, Xie K, Lei X, et al. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study[J]. Int Ophthalmol, 2021, 41(4): 1291-1299. DOI: 10.1007/s10792-020-01685-x.
|
5. |
Islam MM, Yang HC, Poly TN, et al. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis[J/OL]. Comput Methods Programs Biomed, 2020, 191: 105320[2020-01-16]. https://pubmed.ncbi.nlm.nih.gov/32088490/. DOI: 10.1016/j.cmpb.2020.105320.
|
6. |
Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening[J]. JAMA, 2016, 316(22): 2366-2367. DOI: 10.1001/jama.2016.17563.
|
7. |
Zhang Y, Shi J, Peng Y, et al. Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter and prospective study[J/OL]. BMJ Open Diabetes Res Care, 2020, 8(1): e001596[2020-08-01]. https://pubmed.ncbi.nlm.nih.gov/33087340/. DOI: 10.1136/bmjdrc-2020-001596.
|
8. |
吴丰玉, 栗夏莲. 糖尿病患者眼底照相人工与人工智能分析结果比较[J]. 中华眼底病杂志, 2021, 37(1): 27-31. DOI: 10.3760/cma.j.cn511434-20200915-00452.Wu FY, Li XL. Analysis and comparison of artificial and artificial intelligence in diabetic fundus photography[J]. Chin J Ocul Fundus Dis, 2021, 37(1): 27-31. DOI: 10.3760/cma.j.cn511434-20200915-00452.
|
9. |
Olvera-Barrios A, Heeren TF, Balaskas K, et al. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images[J]. Br J Ophthalmol, 2021, 105(2): 265-270. DOI: 10.1136/bjophthalmol-2019-315394.
|
10. |
中国医药教育协会智能医学专委会智能眼科学组, 国家重点研发计划“眼科多模态成像及人工智能诊疗系统的研发和应用”项目组. 基于眼底照相的糖尿病视网膜病变人工智能筛查系统应用指南[J]. 中华实验眼科杂志, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001.Intelligent Medicine Special Committee of China Medicine Education Association, National Key Research and Development Program of China ''Development and Application of Ophthalmic Multimodal Imaging and Artificial Intelligence Diagnosis and Treatment System'' Project Team. Guidelines for artificial intelligent diabetic retinopathy screening system based on fundus photography[J]. Chin J Exp Ophthalmol, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001.
|
11. |
Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiplefundus diseases based on colour fundus photography[J/OL]. Br J Ophthalmol, 2021(2021-04-29)[2021-04-29]. https://bjo.bmj.com/content/early/2021/03/30/bjophthalmol-2020-316290.long. DOI: 10.1136/bjophthalmol-2020-316290. [published online ahead of print].
|
12. |
高韶晖, 金学民, 赵朝霞, 等. 糖尿病视网膜病变人工智能机器人辅助诊断系统的建立及应用[J]. 中华实验眼科杂志, 2019, 37(8): 669-673. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.016.Gao SH, Jin XM, Zhao ZX, et al. Validation and application of an artificial intelligence robot assisted diagnosis system for diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2019, 37(8): 669-673. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.016.
|
13. |
Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J/OL]. Lancet Digit Health, 2020, 2(5): e240-e249[2020-04-23]. https://pubmed.ncbi.nlm.nih.gov/33328056/. DOI: 10.1016/S2589-7500(20)30060-1.
|
14. |
Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007.
|
15. |
杨叶辉, 刘佳, 许言午, 等. 基于多尺度卷积神经网络的糖尿病视网膜病变病灶检测算法及应用[J]. 中华实验眼科杂志, 2019, 37(8): 624-629. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.007.Yang YH, Liu J, Xu YW, et al. A novel lesion detection algorithm based on multi-scale input convolutional neural network model for diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2019, 37(8): 624-629. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.007.
|
16. |
郑武, 阮坤炜, 吴天添, 等. 人工智能糖尿病视网膜病变筛查系统与眼科医师诊断结果的一致性分析[J]. 眼科新进展, 2020, 40(12): 1170-1173. DOI: 10.13389/j.cnki.rao.2020.0260.Zheng W, Ruan KW, Wu TT, et al. Consistency of artificial intelligence screening system with ophthalmologist for diagnosing of diabetic retinopathy[J]. Rec Adv Ophthalmol, 2020, 40(12): 1170-1173. DOI: 10.13389/j.cnki.rao.2020.0260.
|
17. |
李治玺, 张健, Fong Nellie, 等. 人工智能初筛分流在大规模糖尿病视网膜病变筛查中的应用[J]. 中华医学杂志, 2020, 100(48): 3835-3840. DOI: 10.3760/cma.j.cn112137-20200901-02526.Li ZX, Zhang J, Nellie F, et al. Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China[J]. Natl Med J China, 2020, 100(48): 3835-3840. DOI: 10.3760/cma.j.cn112137-20200901-02526.
|