1. |
Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022.
|
2. |
Yan YN, Wang YX, Xu L, et al. Fundus tessellation: prevalence and associated factors: The Beijing Eye Study 2011[J]. Ophthalmology, 2015, 122(9): 1873-1880. DOI: 10.1016/j.ophtha.2015.05.031.
|
3. |
Guo Y, Liu L, Zheng D, et al. Prevalence and associations of fundus tessellation among junior students from greater Beijing[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 4033-4040. DOI: 10.1167/iovs.19-27382.
|
4. |
Yan YN, Wang YX, Yang Y, et al. Ten-year progression of myopic maculopathy: the Beijing Eye Study 2001-2011[J]. Ophthalmology, 2018, 125(8): 1253-1263. DOI: 10.1016/j.ophtha.2018.01.035.
|
5. |
Yamashita T, Iwase A, Kii Y, et al. Location of ocular tessellations in Japanese: Population-Based Kumejima Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4963-4967. DOI: 10.1167/iovs.18-25007.
|
6. |
Tan TE, Anees A, Chen C, et al. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study[J/OL]. Lancet Digit Health, 2021, 3(5): e317-e329[2021-06-09]. https://pubmed.ncbi.nlm.nih.gov/33890579/. DOI: 10.1016/S2589-7500(21)00055-8.
|
7. |
Lu L, Ren P, Tang X, et al. AI-model for identifying pathologic myopia based on deep learning algorithms of myopic maculopathy classification and "plus" lesion detection in fundus images[J/OL]. Front Cell Dev Biol, 2021, 9: 719262[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34722502/. DOI: 10.3389/fcell.2021.719262.
|
8. |
Du R, Xie S, Fang Y, et al. Deep learning approach for automated detection of myopic maculopathy and pathologic myopia in fundus images[J]. Ophthalmol Retina, 2021, 5(12): 1235-1244. DOI: 10.1016/j.oret.2021.02.006.
|
9. |
Shao L, Zhang QL, Long TF, et al. Quantitative assessment of fundus tessellated density and associated factors in fundus images using artificial intelligence[J]. Transl Vis Sci Technol, 2021, 10(9): 23. DOI: 10.1167/tvst.10.9.23.
|
10. |
中国医药教育协会智能医学专委会智能眼科学组, 国家重点研发计划“眼科多模态成像及人工智能诊疗系统的研发和应用”项目组. 基于眼底照相的糖尿病视网膜病变人工智能筛查系统应用指南[J]. 中华实验眼科杂志, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001.Intelligent Medicine Special Committee of China Medicine Education Association, National Key Research and Development Program of China "Development and Application of Ophthalmic Multimodal Imaging and Artificial Intelligence Diagnosis and Treatment System" Project Team. Guidelines for artificial intelligent diabetic retinopathy screening system based on fundus photography[J]. Chin J Exp Ophthalmol, 2019, 37(8): 593-598. DOI: 10.3760/cma.j.issn.2095-0160.2019.08.001.
|
11. |
Zhou M, Jin K, Wang S, et al. Color retinal image enhancement based on luminosity and contrast adjustment[J]. IEEE Trans Biomed Eng, 2018, 65(3): 521-527. DOI: 10.1109/TBME.2017.2700627.
|
12. |
Funt B, Ciurea F, Mccann J. Retinex in MATLAB™[J]. J Electron Imaging, 2004, 13(1): 112-121. DOI: 10.1117/1.1636761.
|
13. |
Petro AB, Sbert C, Morel JM. Multiscale Retinex[J]. Image Process on Lin, 2014, 4: 71-88. DOI: 10.5201/ipol.2014.107.
|
14. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer, 2015: 234-241.
|
15. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C/OL]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016[2016-06-26]. https://www.computer.org/csdl.
|
16. |
Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C/OL]//2016 Fourth International Conference on 3D Vision (3DV), Stanford, USA, 2016[2016-10-25]. http://arxiv.org/pdf/1606.04797.
|
17. |
Guo Y, Wang R, Zhou X, et al. Lesion-aware segmentation network for atrophy and detachment of pathological myopia on fundus images[C]. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Calcutta, India, 2020.
|
18. |
Shit S, Paetzold JC, Sekuboyina A, et al. clDice-a topology-preserving loss function for tubular structure segmentation[EB/OL]. (2022-01-10) [2020-03-16]. https://arxiv.org/abs/2003.07311.
|
19. |
Lin TY, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C/OL]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), USA, Honolulu, 2017[2017-04-10]. https://www.computer.org/csdl.
|
20. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216.
|
21. |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176. DOI: 10.1001/jamaophthalmol.2017.3782.
|
22. |
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206. DOI: 10.1016/j.ophtha.2018.01.023.
|
23. |
Tong Y, Lu W, Deng QQ, et al. Automated identification of retinopathy of prematurity by image-based deep learning[J]. Eye Vis (Lond), 2020, 7: 40. DOI: 10.1186/s40662-020-00206-2.
|
24. |
Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations[J/OL]. Prog Retin Eye Res, 2019, 72: 100759[2019-04-29]. https://pubmed.ncbi.nlm.nih.gov/31048019/. DOI: 10.1016/j.preteyeres.2019.04.003.
|