1. |
Bhatwadekar AD, Rameswara V. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs[J]. Expert Opin Investig Drugs, 2020, 29(12): 1431-1442. DOI: 10.1080/13543784.2020.1842872.
|
2. |
陈筵明, 龚维坤, 孙英芬, 等. 昼夜节律紊乱与2型糖尿病关系的研究进展[J]. 中国细胞生物学学报, 2020, 42(9): 1684-1693. DOI: 10.11844/cjcb.2020.09.0023.Chen YM, Gong WK, Sun YF, et al. Progress in the study of the relationship between circadian rhythm disruption and type 2 diabetes mellitus[J]. Chinese Journal of Cell Biology, 2020, 42(9): 1684-1693. DOI: 10.11844/cjcb.2020.09.0023.
|
3. |
Ostrin LA, Jnawali A, Carkeet A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic Physiol Opt, 2019, 39(5): 358-369. DOI: 10.1111/opo.12633.
|
4. |
Felder-Schmittbuhl MP, Calligaro H, Dkhissi-Benyahya O. The retinal clock in mammals: role in health and disease[J]. ChronoPhysiology and Therapy, 2017, 7: 33-45. DOI: 10.2147/CPT.S115251.
|
5. |
Suwazono Y, Dochi M, Oishi M, et al. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers[J]. Chronobiol Int, 2009, 26(5): 926-941. DOI: 10.1080/07420520903044422.
|
6. |
Vetter C, Scheer F. A healthy lifestyle-reducing T2DM risk in shift workers?[J]. Nat Rev Endocrinol, 2019, 15(4): 194-196. DOI: 10.1038/s41574-019-0164-z.
|
7. |
Qian JY, Block GD, Colwell CS, et al. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats[J]. Diabetes, 2013, 62(10): 3469-3478. DOI: 10.2337/db12-1543.
|
8. |
Wu T, ZhuGe F, Sun L, et al. Enhanced effect of daytime restricted feeding on the circadian rhythm of streptozotocin-induced type 2 diabetic rats[J/OL]. Am J Physiol-Endoc M, 2012, 302(9): E1027-1035[2021-05-15]. https://pubmed.ncbi.nlm.nih.gov/22318948/. DOI: 10.1152/ajpendo.00651.2011.
|
9. |
Perelis M, Marcheva B, Ramsey KM, et al. Pancreatic beta cell enhancers regulate rhythmic transcription of genes controlling insulin secretion[J/OL]. Science, 2015, 350(6261): aac4250[2015-11-06]. https://pubmed.ncbi.nlm.nih.gov/26542580/. DOI: 10.1126/science.aac4250.
|
10. |
Ding GL, Li X, Hou XG, et al. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity[J]. Nature, 2021, 592(7856): 763-767. DOI: 10.1038/s41586-021-03358-w.
|
11. |
Pulimeno P, Mannic T, Sage D, et al. Autonomous and self-sustained circadian oscillators displayed in human islet cells[J]. Diabetologia, 2013, 56(3): 497-507. DOI: 10.1007/s00125-012-2779-7.
|
12. |
Corella D, Asensio EM, Coltell O, et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial[J]. Cardiovasc Diabetol, 2016, 15: 4. DOI: 10.1186/s12933-015-0327-8.
|
13. |
Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631. DOI: 10.1038/nature09253.
|
14. |
Vieira E, Merino B, Quesada I. Role of the clock gene Rev-erbalpha in metabolism and in the endocrine pancreas[J]. Diabetes Obes Metab, 2015, 17: 106-114. DOI: 10.1111/dom.12522.
|
15. |
Barclay JL, Shostak A, Leliavski A, et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice[J/OL]. Am J Physiol Endocrinol Metab, 2013, 304(10): E1053-1063[2013-05-15]. https://pubmed.ncbi.nlm.nih.gov/23531614/. DOI: 10.1152/ajpendo.00512.2012.
|
16. |
张翕宇, 晁俊, 王鹤亭, 等. 参芪复方对2型糖尿病GK大鼠生理节律的影响[J]. 实用医学杂志, 2020, 36(7): 874-879. DOI: 10.3969/j.issn.1006-5725.2020.07.009.Zhang XY, Chao J, Wang HT, et al. Effect of Shenqi compound on physiological rhythm in type 2 diabetic GK rats[J]. The Journal of Practical Medicine, 2020, 36(7): 874-879. DOI: 10.3969/j.issn.1006-5725.2020.07.009.
|
17. |
Ribas-Latre A, Fekry B, Kwok C, et al. Rosiglitazone reverses high fat diet-induced changes in BMAL1 function in muscle, fat, and liver tissue in mice[J]. Int J Obes (Lond), 2019, 43(3): 567-580. DOI: 10.1038/s41366-018-0090-5.
|
18. |
Wang K, Sun Y, Lin P, et al. Liraglutide activates AMPK signaling and partially restores normal circadian rhythm and insulin secretion in pancreatic islets in diabetic mice[J]. Biol Pharm Bull, 2015, 38(8): 1142-1149. DOI: 10.1248/bpb.b15-00024.
|
19. |
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases[J]. Prog Retin Eye Res, 2014, 39: 58-76. DOI: 10.1016/j.preteyeres.2013.12.001.
|
20. |
Storch KF, Paz C, Signorovitch J, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information[J]. Cell, 2007, 130(4): 730-741. DOI: 10.1016/j.cell.2007.06.045.
|
21. |
Dutta S, Ghosh S, Ghosh S. Association of sleep disturbance with diabetic retinopathy[J]. Eur J Ophthalmol, 2022, 32(1): 468-474. DOI: 10.1177/1120672120974296.
|
22. |
Kim YS, Davis SCAT, Stok WJ, et al. Impaired nocturnal blood pressure dipping in patients with type 2 diabetes mellitus[J]. Hypertens Res, 2019, 42(1): 59-66. DOI: 10.1038/s41440-018-0130-5.
|
23. |
Knudsen ST, Poulsen PL, Hansen KW, et al. Pulse pressure and diurnal blood pressure variation: association with micro- and macrovascular complications in type 2 diabetes[J]. Am J Hypertens, 2002, 15(3): 244-250. DOI: 10.1016/s0895-7061(01)02281-6.
|
24. |
Di R, Luo Q, Mathew D, et al. Diabetes alters diurnal rhythm of electroretinogram in db/db mice[J]. Yale J Biol Med, 2019, 92(2): 155-167.
|
25. |
Polito A, Del Borrello M, Polini G, et al. Diurnal variation in clinically significant diabetic macular edema measured by the stratus OCT[J]. Retina, 2006, 26(1): 14-20. DOI: 10.1097/00006982-200601000-00003.
|
26. |
Busik JV, Tikhonenko M, Bhatwadekar A, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock[J]. J Exp Med, 2009, 206(13): 2897-2906. DOI: 10.1084/jem.20090889.
|
27. |
Wang Q, Tikhonenko M, Bozack SN, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina[J/OL]. PLoS One, 2014, 9(4): e95028[2014-04-15]. https://pubmed.ncbi.nlm.nih.gov/24736612/. DOI: 10.1371/journal.pone.0095028.
|
28. |
Lahouaoui H, Coutanson C, Cooper HM, et al. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina[J]. Mol Vis, 2016, 22: 959-969.
|
29. |
Lyons TJ, Jenkins AJ, Zheng D, et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort[J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 910-918. DOI: 10.1167/iovs.02-0648.
|
30. |
Chang YC, Wu WC. Dyslipidemia and diabetic retinopathy[J]. Rev Diabet Stud, 2013, 10(2-3): 121-132. DOI: 10.1900/RDS.2013.10.121.
|
31. |
Fu Z, Chen CT, Cagnone G, et al. Dyslipidemia in retinal metabolic disorders[J/OL]. EMBO Mol Med, 2019, 11(10): e10473[2019-09-05].https://pubmed.ncbi.nlm.nih.gov/31486227/. DOI: 10.15252/emmm.201910473.
|
32. |
Matsumoto E, Ishihara A, Tamai S, et al. Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver[J]. J Biol Chem, 2010, 285(43): 33028-33036. DOI: 10.1074/jbc.M109.089391.
|
33. |
Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock[J]. Mol Endocrinol, 2006, 20(8): 1715-1727. DOI: 10.1210/me.2006-0052.
|
34. |
Wang N, Yang G, Jia Z, et al. Vascular PPARγ controls circadian variation in blood pressure and heart rate through Bmal1[J]. Cell Metabolism, 2008, 8(6): 482-491. DOI: 10.1016/j.cmet.2008.10.009.
|
35. |
Berdeaux O, Acar N. Very-long-chain polyunsaturated fatty acids in the retina: analysis and clinical relevance in physiological and pathological conditions[J]. Oléagineux, Corps gras, Lipides, 2011, 18(5): 284-290. DOI: 10.1051/ocl.2011.0406.
|
36. |
Tikhonenko M, Lydic TA, Wang Y, et al. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4[J]. Diabetes, 2010, 59(1): 219-227. DOI: 10.2337/db09-0728.
|
37. |
黎晓新, 白玉婧. 重视Müller细胞在糖尿病视网膜病变中作用的基础研究[J]. 中华眼科杂志, 2015, 51(5): 321-322. DOI: 10.3760/cma.j.issn.0412-4081.2015.05.001.Li XX, Bai YJ. To attach importance of basic research in Müller cell of diabetic retinopathy[J]. Chin J Ophthalmol, 2015, 51(5): 321-322. DOI: 10.3760/cma.j.issn.0412-4081.2015.05.001.
|
38. |
Xu L, Ruan G, Dai H, et al. Mammalian retinal Müller cells have circadian clock function[J]. Molecular Vision, 2016, 22: 275-283.
|
39. |
Xu LL, Penn J, McMahon D. Circadian clock gene regulation of retinal neovascularization[C]. ARVO Annual Meeing, Seattle, The United States, 2013.
|
40. |
Xu LL, Penn JS, McMahon D. Retinal clock genes in mouse retinal Müller cells and endothelial cells influence retinal neovascularization[C]. ARVO Annual Meeing, Denver, The United States, 2015.
|
41. |
Xu LL, Gou Y, McMahon D. Identification of genes and pathways involved in mouse retinal Müller cell by RNAseq analysis[C]. ARVO Annual Meeing, Baltimore Maryland, The United States, 2017.
|
42. |
Kusunose N, Akamine T, Kobayashi Y, et al. Contribution of the clock gene DEC2 to VEGF mRNA upregulation by modulation of HIF1alpha protein levels in hypoxic MIO-M1 cells, a human cell line of retinal glial (Müller) cells[J]. Jpn J Ophthalmol, 2018, 62(6): 677-685. DOI: 10.1007/s10384-018-0622-5.
|
43. |
Hassan I, Luo Q, Majumdar S, et al. Tumor necrosis factor alpha (TNF-alpha) disrupts Kir4.1 channel expression resulting in Müller cell dysfunction in the retina[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2473-2482. DOI: 10.1167/iovs.16-20712.
|
44. |
Gao F, Xu LJ, Zhao Y, et al. K+ channels of Müller glial cells in retinal disorders[J]. CNS Neurol Disord Drug Targets, 2018, 17(4): 255-260. DOI: 10.2174/1871527317666180202114233.
|
45. |
Luo Q, Xiao Y, Alex A, et al. The diurnal rhythm of insulin receptor substrate-1 (IRS-1) and Kir4.1 in diabetes: implications for a clock gene Bmal1[J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 1928-1936. DOI: 10.1167/iovs.18-26045.
|
46. |
Alex A, Luo Q, Mathew D, et al. Metformin corrects abnormal circadian rhythm and Kir4.1 channels in diabetes[J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 46. DOI: 10.1167/iovs.61.6.46.
|
47. |
Lois N, McCarter RV, O'Neill C, et al. Endothelial progenitor cells in diabetic retinopathy[J]. Front Endocrinol (Lausanne), 2014, 5: 44. DOI: 10.3389/fendo.2014.00044.
|
48. |
Lee IG, Chae SL, Kim JC. Involvement of circulating endothelial progenitor cells and vasculogenic factors in the pathogenesis of diabetic retinopathy[J]. Eye (Lond), 2006, 20(5): 546-552. DOI: 10.1038/sj.eye.6701920.
|
49. |
Zhang W, Yan H. Dysfunction of circulating endothelial progenitor cells in type 1 diabetic rats with diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2013, 251(4): 1123-1131. DOI: 10.1007/s00417-013-2267-x.
|
50. |
Thomas HE, Redgrave R, Cunnington MS, et al. Circulating endothelial progenitor cells exhibit diurnal variation[J/OL]. Arterioscler Thromb Vasc Biol, 2008, 28(3): e21-22[2008-03-01]. https://pubmed.ncbi.nlm.nih.gov/18296584/. DOI: 10.1161/ATVBAHA.107.160317.
|
51. |
Bhatwadekar AD, Yan Y, Qi X, et al. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow[J]. Diabetes, 2013, 62(1): 273-282. DOI: 10.2337/db12-0172.
|
52. |
Kleinman ME, Ambati J. Clocking in on diabetic retinopathy[J]. Diabetes, 2013, 62(1): 29-30. DOI: 10.2337/db12-1151.
|
53. |
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association[J]. Diabetes Care, 2016, 39(11): 2065-2079. DOI: 10.2337/dc16-1728.
|
54. |
Emens JS, Burgess HJ. Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology[J]. Sleep Med Clin, 2015, 10(4): 435-453. DOI: 10.1016/j.jsmc.2015.08.001.
|